Continuous and Differentiable Functions Exploration

Objective: Given a hybrid function, make the function continuous at the boundary between the two branches. Then make the function differentiable at this point.

Let f be the function defined by
$f(x)=\left\{\begin{array}{ll}x+1, & x<2 \\ k(x-5)^{2}, & x \geq 2\end{array}\right\}$
where k is a constant.

1. Sketch the graph of f for $k=1$.
2. Function is discontinuous at $x=2$. Explain what it means for the function to be discontinuous.
3. Find $\lim _{x \rightarrow 2^{-}} f(x)$ and $\lim _{x \rightarrow 2^{+}} f(x)$. The second limit will be in terms of k. What must be true of these two limits for f to be continuous at $x=2$?
4. Find the value of k that makes f continuous at $x=2$. Sketch the graph of f for this value of k.
5. The graph in part 4 has a cusp at $x=2$. Cusp comes from the Latin cuspis, meaning a point or a pointed end. Why is it appropriate to use the word cusp in this context?
6. Suppose someone asks, 'Is $f(x)$ increasing or decreasing at $x=2$ with k as in part 4?" How would you have to answer that question? What, then, can you conclude about the derivative of a function at a point where the graph has a cusp?
7.Sketch the graph of $f^{\prime}(x)$ for the value of k you found in part 4.
7. For two graphs to join smoothly, the gradients on both sides have to be equal. Let's define a new function g :
$g(x)=\left\{\begin{array}{ll}x+1, & x<2 \\ a x^{2}+b x, & x \geq 2\end{array}\right\}$
Find the values of a and b so that both graphs join smoothly.
8. Sketch the graph of $g(x)$ and $g^{\prime}(x)$.
