\qquad Class \qquad Date \qquad

FILES NEEDED: Cabri® Jr.
AppVars: GL71A, GL71B

Given: In GL71A, $\overleftrightarrow{D E} \| \overleftrightarrow{A C}$ and $\overrightarrow{B P} \perp \overleftrightarrow{A C}$.
$\triangle A B C$ has base length $A C$ and height $B P$.
Explore: area of $\triangle A B C$

1. Install the screen measures $B P$ and area of $\triangle A B C$. Predict what will happen to each screen measure as you drag point B along $\overleftrightarrow{D E}$.

2. Justify each prediction. Then test your predictions by dragging B along $\overleftrightarrow{D E}$.

Before doing Question 2, save your GL71A from Question 1 as PIC1.
In GL71B at the right, $\triangle A B C$ is the same triangle as the one shown above. In this case, however, $\overleftrightarrow{E F} \| \overrightarrow{A B}$.
3. Predict what will happen to the screen measures $A C$ and area of $\triangle A B C$ as you drag C along $\overleftrightarrow{E F}$.
4. Justify each prediction. Then test your predictions by dragging C along $\overleftrightarrow{E F}$.

Extension

Recall the screen that you saved as PIC1. Replace the screen measures for $B P$ with the measures for $A B$ and $B C$. Also, install the screen measure for the perimeter of $\triangle A B C$. Note that you now have four measures on the screen.
6. Drag point B along $\overleftrightarrow{D E}$. Describe $\triangle A B C$ for large values of the perimeter and for small values of the perimeter.
7. \quad Drag B to find the smallest value of the perimeter. What type of triangle does $\triangle A B C$ appear to be? Give a convincing argument why $\triangle A B C$ must be this type of triangle.

Area of a Triangle

Activity Objective

Students use Cabri® Jr. to explore the relationship between the base and height and the area of a triangle.

Correlation to Text

- Lesson 7-1: Areas of Parallelograms and Triangles

Time

- 15-20 minutes

Materials/Software

- App: Cabri® Jr. - AppVars: GL71A, GL71B - Activity worksheet

Skills Needed

- drag an object - install a measure

Classroom Management

- Use TI Connect ${ }^{\text {TM }}$ software, TI-GRAPH LINK ${ }^{\text {TM }}$ software, the TI-Navigator ${ }^{\text {TM }}$ system, or unit-to-unit links to transfer GL71A and GL71B to each calculator.

Notes

- Students should notice that the initial area of $\triangle A B C$ is the same in GL71A and GL71B.

Answers

1. The height and the area will not change.
2. $\overleftrightarrow{D E}$ and $\overleftrightarrow{A C}$ are parallel, so $B P$ will not change. The area does not change because it depends on base and height, which do not change.
3. $A C$ will change. The area will stay the same.
4. $\quad A C$ increases as C moves away from A toward E. $A C$ decreases as C moves closer to A in the direction of F. Area stays the same because 1) base $\overline{A B}$ does not change and 2) the height to $\overline{A B}$ stays the same as parallel lines remain a constant distance apart.
5. Check students' work. $B P=\frac{2 \cdot \text { Area } \triangle A B C}{A C}$ (both numerator and denominator shown on screen).
6. $\triangle A B C$ is obtuse for large perimeters and acute for small perimeters.
7. Isosceles; Answers may vary. Sample: For every non-isosceles triangle, there is a second triangle congruent to it. These two triangles determine two locations of B. The triangle for each location of B between these two points has a smaller perimeter. Thus the smallest perimeter must occur where $B A=B C$.
