CAS UNEXPECTED RESULTS

andEQUIVALENT EXPRESSIONS

How does interpret simple expressions like ax ? If we enter ax CAS interprets this as a variable name. If we enter $a \times x$ this is "a" times x .	F1+ F2+ F3+ F4+ F5 F6+ UP Tools/Alsebra/Catc/Bther/PrimitDictean UP Done • NewProb Done • ax ax • a · x a · x • aix a · x <td< th=""></td<>
Use of Quadratic Formula $ax^2 + bx + c = 0$ The CAS produces results not in the same order as that produced by the Quadratic Formula as usually stated.	$\begin{array}{c c} \hline f_{1^{*}} & f_{2^{*}} & f_{3^{*}} & f_{4^{*}} & f_{5^{*}} & f_{5^{*}} & f_{4^{*}} & f_{5^{*}} & f_{5^{*$
 Factorisation The CAS will express things in slightly different forms than that sometimes produced by our tried and true methods. If the students are not aware of the requirement of using factor (expression, variable) they might miss irrational solutions. 	$\frac{f_{22}^{+}}{f_{2012}} \frac{f_{22}^{+}}{g_{12}^{+}} \frac{f_{22}^{+}}{g_{1$

1

The CAS knows more about exact values they we currently expect our students to know. It does, however, not know everything.	$\frac{\begin{bmatrix} F_{1}^{*} & F_{2}^{*} & F_{3}^{*} & F_{4}^{*} & F_{5}^{*} \\ Tools an several (calculater Primul Clean up) \\ \bullet \text{ New Prob } & \text{Done} \\ \bullet \sin\left(\frac{\pi}{8}\right) & \frac{\sqrt{2-\sqrt{2}}}{2} \\ \bullet \sin\left(\frac{\pi}{7}\right) & \sin\left(\frac{\pi}{7}\right) \\ \frac{\sin(\pi/7)}{8} \\ \frac{\sin(\pi/7)}{8} \\ \frac{\sin(\pi/7)}{8} \\ \frac{\cos(\pi/7)}{8} \\ \cos(\pi/7$
Solving Trigonometric equations results in emphasising the issue of multiple results. The use of @n1 as a parameter.	$\frac{F_{1}}{T_{00}} \frac{F_{2}}{F_{2}} \frac{F_{3}}{F_{2}} \frac{F_{4}}{F_{2}} \frac{F_{5}}{F_{2}} \frac{F_{6}}{F_{0}} \frac{F_{6}}{U_{0}}$ $= \text{NewProb} \qquad \text{Done}$ $= \text{solve} \left(\sin \left(x + \frac{\pi}{2} \right) = 1/2, x \right)$ $x = \frac{(6 \cdot 2n1 + 1) \cdot \pi}{3} \text{ or } x = \frac{(6)}{5}$ $\frac{\text{solve}(\sin (x + \pi/2) = 1/2, x)}{\text{Main}}$ $= \frac{F_{1}}{F_{0}} \frac{F_{1}}{F_{0$
Automatic Simplification can sometimes move faster than the students thinking	$ \begin{array}{c c} \hline F1 & F2 & F3 & F4 & F5 \\ \hline Tools & f3 & F4 & F5 & F6 & \\ \hline Tools & f3 & ebra & Calc & Dther & Pr3m & Done \\ \hline \bullet & New Prob & Done \\ \hline \bullet & 1 - (\cos(x))^2 & (\sin(x))^2 \\ \hline \hline 1 - (\cos(x)) \wedge 2 \\ \hline \hline 1 - (\cos(x)) \wedge 2 \\ \hline Main & Rab auto & Func & 2/30 \\ \end{array} $
$\frac{(2x)^3 y^2}{xy^4}$ The aim here would be for the student to do this step by step, instead the CAS simplifies the expression in one step.	$\frac{\begin{bmatrix} F_{1*} & F_{2*} \\ Tools a 19 ebra (Calc ather) Pr 9 mill (Lean up) \\ \bullet \text{ New Prob } & \text{Done} \\ \bullet \frac{(2 \cdot x)^3 \cdot y^2}{x \cdot y^4} & \frac{8 \cdot x^2}{y^2} \\ \frac{((2x)^3 \cdot y^2) / (x + y^4)}{((2x)^3 + y^2) / (x + y^4)} \\ \hline \hline \\ \hline $
This is where users of the TI89 may find the Symbolic Math Guide useful	