Name \qquad
Class \qquad

Problem 1 - Using Dilations

On page 1.3, measure one side and one angle of the triangle so that each person in your group measures a different side and angle. Put a point in the middle of the triangle and label it C.

Then use the Dilation tool make a new triangle by clicking on point C, the scale factor, and then $\triangle P Q R$. Label this $\triangle X Y Z$. Now measure the corresponding side and angle.

1. What were the measures of the angles and sides of the triangles?

Compare this to the other students in your group.
$\triangle P Q R$ angle \qquad $\triangle Y Z$ angle \qquad
$\triangle P Q R$ side \qquad
\qquad
2. What do you notice about the two angles?
3. How do the lengths of the sides compare? Is this the result you were expecting? What did the other members of your group observe?
4. Now drag a vertex of $\triangle P Q R$, do the relationships above remain the same?
5. Drag point C : Are the relationships preserved under this change? Compare your results to others in your group. Does it make any difference that each person may have constructed a different center point?
6. Complete the conjectures:

In a dilation, corresponding angles \qquad .
In a dilation, corresponding sides \qquad .
7. Change the scale factor to 3 . Describe what happens to $\triangle X Y Z$. Does this change the relationships you found above?
8. Now change the scale factor to 0.5 . What happens to $\triangle X Y Z$?

Problem 2 - Using A Negative Scale Factor

On page 2.2, measure the same side and angle from Problem 1. Use the Dilation tool to construct a new triangle, $\triangle X Y Z$. Measure the corresponding side and angle.
9. Describe in words the result when a dilation is performed with a negative scale factor and center of dilation is outside of the triangle.
10. Do the properties that you noted in Problem 1 still hold true?

Problem 3 - Constructing with a Parallel Line

On page 3.3, place a point on $\overline{P Q}$ and label it S. Construct a parallel line to $\overline{Q R}$ through point S. Find the intersection of the parallel line and side $P R$.
Label it T. Hide the parallel line and construct $S T$.
11. Explain why corresponding angles of $\triangle P S T$ and $\triangle P Q R$ are congruent.
12. Measure the sides of both triangles. Use the Calculate tool and the formula A/B to find the ratios of corresponding sides.

$$
\frac{P S}{P Q}=\quad \frac{P T}{P R}=\quad \frac{S T}{Q R}=
$$

13. Drag point S to a new location and record the ratios again:
$\frac{P S}{P Q}=$
$\frac{P T}{P R}=$
$\frac{S T}{Q R}=$
14. What relationship is true of corresponding sides of $\triangle P S T$ and $\triangle P Q R$? Does the location of point S affect this relationship?
