

STEM Initiative

Phoenix Chase Activity

STEM Lesson for TI-Nspire[™] Technology

Objective: Students will use geometry to investigate NASCAR track designs and the speeds and g-forces caused by banking.

About the Lesson: Phoenix International Raceway has varied banking all around the track. Turns 1-2 are progressively are banked from 10 to 11 degrees while Turns 3-4 are progressively banked from 8 to 9 degrees. The backstretch goes from 10 to 12 degrees and the frontstretch is 3 degrees. There is even a roller coaster effect going through the "dog leg" following the exit of turn 2 due to an elevation change. It is guite impossible to have an optimal set-up for both ends of this track. The differential in the banking angle with the difference in radius from one end to the other allows you to have a great car in one end, but not both, or a compromise set-up for both ends. Crew chiefs and engineers have their work cut out for them. As for the drivers, their athletic ability is tested. If the cars exit Turn 2 at 130 ft/sec (~ 90 mph) then in 5.3 seconds down the back straight they can get up to about 250 ft/sec (~170 mph); but if they go around the high bank turn at that speed, the driver would experience slightly more than 12 g's--the max in fighter aircraft with pressurized suits to prevent blacking out is around 10 g/s. The result would be a track that is harder on brakes than Martinsville and subjects the drivers to as much stress (centripetal g loading) as they can take so they need to slow down in Turns 3 and 4 to reduce the g loading. Estimated lap times would be on the order of 22.5 to 23 seconds on new tires, and they would wear very fast on the flat curve being subjected to blow-outs due to high g loads on the 60 degree banked turn. It would be physically exhausting for all but the most well conditioned drivers. Can you design a track more fascinating than Phoenix?

Materials: Student Worksheets

Analysis:

Using TI-Nspire Technology

- 1. Open the file named *Phoenix_Chase_Activity.tns*.
- 2. Move to page **1.2**.
- 3. Drag the points around the track.

1.1 1.2 1.3 Phoenix_Ch	.ace 🗢 🛛 🚺 🔀
$\stackrel{\triangle}{\nabla}$ bank_angle = 60.	100 ft
	Side View
r1= 233 <i>ft</i>	k
r2=192 <i>ft</i>	

4. What do you notice about the radii r1 and r2?

- 5. Click on the \blacktriangle and \checkmark at the top left of the page.
- 6. What do you notice about the banking angle?

- 7. Drag the points around the track until **r1** is close 100 and **r2** is close to 200. Set the banking angle to 10 degrees.
- 8. Move to page **1.3**. This table shows the gforces at different speeds (velocity) for a flat track and your set degree of banking for each radius.

1.1 1.2 1.3 Phoenix_Ch…ace ↓ 1.1 1.2 1.3 Phoenix_Ch…ace ↓						
	A V	elocity	[₿] flatg	[■] bankedg	∎ _{flatg2}	2
٠						
1		50	0.333801	1.01061	0.4051	94
2		60	0.480674	1.09486	0.583	48
3		70	0.65425	1.19441	0.7941	81
4		80	0.854531	1.30929	1.03	73
5		90	1.08152	1.43948	1.312	83 🚽
A1 50					•	

9. What is the g-force drivers will experience in a turn with a radius of 200 ft going 70 mph if the track is flat and if the track is banked 10 degrees?

10. Move back to page **1.2**.

11. Create three different track designs and fill in the table below.

Radius 1	Banking Angle	g-force	Radius 2	Banking Angle	g-force

- 12. Choose one of your track designs and find the perimeter around the track. Press (menu) then click **Measurement > Length**. Click the part of the track you want to measure and the length will appear. What is track length in feet?
- 13. Most NASCAR races are about 400 miles long. How many laps will it take around your track to travel approximately 400 miles?

Analysis:

Using spreadsheet software

- 1. Open the file named **Phoenix Chase Activity**
- 2. The table shows the different g-forces at the given radius for a flat track and a banked track. The graph shows *g-force vs. velocity*.
- 3. What is the g-force drivers will experience in a turn with a radius of 100 ft going 70 mph if the track is flat and if the track is banked 10 degrees?
- 4. Create three different track designs and fill in the table below. You can change the *r* and *bank angle* on the spreadsheet to help you out.

Radius 1	Banking Angle	g-force	Radius 2	Banking Angle	g-force

5. Make a sketch of each of your three designs above and correctly label all measurements.