# Features of the TI-89 that Maximize its Use Folders, Files, and Management techniques <br> Martha Green, Baldwin High School <br> magreen@juno.com 

## The TI89 Home Screen



## MISCELLANEOUS INFORMATION

- "Disintegrated" print does not indicate a fault in the calculator
- Implied multiplication

The 89 recognizes two letter variables, therefore " $a$ times $b$ " must be entered as " $a * b$ " to distinguish it from the variable $a b$.

- Each application has its own function key assignments with pull-down menus
- Begin new work by "erasing the board" with 2: NewProb(lem)

This clears previously assigned single-character variable names (unless locked or archived); turns off functions and/or stat plots (in graph mode).

- Use $\infty$ ON (instead of 2 ON ) to turn calculator off. It then opens in window last used.


## SPECIAL KEYS

$\infty$ (green) shortcut key to graph features
$\approx$, inverse trig, $e^{x}, \infty$, del
changes contrast
cut, copy, paste
2 (yellow) access to keys, custom, character, math, memory menus
$<=] \notin] \mathrm{T}$ and others
$\varphi$ (purple) used to type in text
/ capitalizes
$2 \varphi$ - locks TI into text type
| An alphabetic list of all functions and commands
Indicates syntax needed (on the Status line)
cancels a menu or dialog box
2 O $\alpha$ "toggles" between split screens
$2+\quad$. Menu contain punctuation, international and math symbols
3 Allows selection of exact/approximate display of answers
In EXACT setting precision is increased by eliminating most rounding errors
Use $\infty, \downarrow$ to return an approximate answer while in exact mode Change folders, type of graphing, etc.


## $\infty E E \quad$ map of frequently used symbols



## SPECIAL FEATURES

Cut/Copy/Paste - text can be moved or copied within the same application or between different applications. The procedure automatically uses the TI clipboard. The steps are similar to those used in typical word processing programs such as MS Word.

Keys: $\quad$ green $\infty$ located on top row
How To: 1) highlight the text to be copied
hold down / (to right of 2 key)while pressing A or B
release/ once highlighted (it will show a "negative" image)
2) select $\infty$ COPY (text still shows "negative" image)
-or-
select $\infty$ Cut (highlighted text disappears)
3) select $\infty$ PASTE
4) move cursor to new text location (this can include another application)

## 5) enter $\downarrow$

## MANAGEMENT TECHNIQUES

Data can be stored in the ' 89 in folders created specific to classes, workshop, etc.
Folders are listed alphabetically The files in each folder are also in alphabetical order.

## CREATE A FOLDER

$2^{\circ}$


5:Create Folder
type in name of new folder


Programs and functions must either be used in the folder where they reside or called up using the proper path: name of folder\name of program or function.

Hint: Create a folder "A" to house frequently used programs and functions. From entry line in $\forall$ screen you can use ${ }^{\circ}$ to retrieve what you need.

Functions and programs can be moved from one folder to another using ${ }^{\circ}$.
place cursor over function to be moved

choose destination folder



Other Management features
Archive $\quad-$ creates additional free RAM

- stores data, etc. in a safe location
- stores equations for use in Numeric Solver

Lock • protects variable from inadvertent deletion of data
Deletes

- removes unwanted text, variables, files caution: there is no "undo", what is deleted STAYS deleted!


## The TI 89 script feature

The feature saves work done in the home screen, which can the accessed later.

$$
\text { Graph the piecewise function } f(x)=\left\{\begin{array}{cc}
x^{2} & x<0 \\
\sqrt{x} & 0 \leq x \leq 4 \\
12-x & x>4
\end{array} \quad\right. \text { and save as a script }
$$

In home sceen $\quad$ 2: $\operatorname{NewProb(lem)}$ 1:Define $f(x)=$ when $\left(x \leq 4\right.$, when $\left.\left(x<0, x^{\wedge} 2,4 x^{\wedge}(1 / 2)\right), 12-x\right)$


TO RUN SCRIPT
Locate cursor on first line.
executes each command


## Differential Equations

C: deSolve returns an equation that explicitly or implicitly specifies a general solution to a $1^{\text {st }}$ or $2^{\text {nd }}$-order ordinary differential equation.
$y^{\prime}$ and $y$ " are used to denote the first and second derivatives of the dependent variable with respect to the independent variable.
' is entered by pressing $2=$
The general solution will contain an arbitrary constant of the form @ $k$ The $k$ is random and resets whenever $\quad 8$ :ClrHome is utilized. Because of the various methods used to solve DEs, the answer obtained may be a different general solution than anticipated.

## General solution Syntax: deSolve(the differential equation, $x, y$ )

Initial Condition Syntax: deSolve(the differential equation and initial conditions, $x, y$ )


Example: Find the general solution to $y^{\prime}=y$.


Find the particular solution of the differential equation $y(x+1)+y^{\prime}=0$ if $\mathrm{y}(-2)=1$.
deSolve $\left(\mathrm{y} *(\mathrm{x}+1)+\mathrm{y}^{\prime}=0\right.$ and $\left.\mathrm{y}(-2)=1, x, y\right)$

## Free Response question AB \& BC 61997 *

Let $v(t)$ be the velocity, in $\mathrm{ft} / \mathrm{sec}$, of a skydiver at time $t$ sec., $t \geq 0$. After her parachute oppens, her velocity satisfies the differential equation $\frac{d y}{d t}=-2 v-32$ with initial condition $\quad v(0)=-50$.
a) Find an expression for $v$ in terms of $t$, where $t$ is measured in seconds.
b) Terminal velocity is defined as $\lim _{t \rightarrow \infty} v(t)$. Find the terminal velocity of the skydiver to the nearest foot per second.
c) It is safe to land when her speed is $20 \mathrm{ft} / \mathrm{sec}$. At what time $t$ does she reach this speed?

$$
\begin{aligned}
& \text { deSolve }\left(v^{\prime}=-2 v-32 \text { and } v(0)=-50, x, v\right) \text {..............v }=-34 e^{-2 x}-16 \\
& \operatorname{limit}\left(\mathrm{v}=-34 e^{-2 \mathrm{x}}-16, \mathrm{x}, \infty\right) \text {. .............................. } \mathrm{v}=-16 \text { (ft/sec) } \\
& \text { solve }\left(-20=-34 e^{-2 \mathrm{x}}-16, \mathrm{x}\right) \text { ل.............................. } x=\frac{\ln (17 / 2)}{2} \\
& \infty \div \text {. } \\
& 1.070 \text { (sec.) }
\end{aligned}
$$

## DIFFERENTIAL EQUATIONS AND SLOPE FIELDS

## Set to DIFF EQUATIONS in 3.

Turn off all functions and data plots (in $\mathrm{y}=$ window )
Set graph format $\infty \subseteq$ to SLPFLD
Define the viewing window
Enter differential equation in yl'
Enter initial condition in yil (optional)
Graph (without an initial condition the slope field alone is graphed)
Example One: Free Response question AB $61997 \quad \frac{d y}{d x}=-2 y-32, \mathrm{y}(0)=-50$.


Example two
Solve the initial condition problem $\frac{d y}{d x}=y+2$ and $\mathrm{y}(0)=1$
In home screen
deSolve ( $\mathrm{y}^{\prime}=\mathrm{y}+2$ and $\left.\mathrm{y}(0)=1, \mathrm{x}, \mathrm{y}\right) \ldots . . . . . . . . . . . . . . . . \mathrm{y}=3 e^{\mathrm{x}}-2$


## Graphically



## CREATING A USER-DEFINED FUNCTION

User-defined functions can extend the capabilities of the TI.
Especially useful is one that will do implicit differentiation (credit given to John Hanna)
A) In the home screen define the function impdif

1: $\quad$ define $\operatorname{impdif}(u u, x x, y y)=-d(u u, x x) / d(u u, y y) \quad$.


EXAMPLE: Find deriv of $x^{2}+y^{2}=5$
$i m p d i f\left(\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2-5, \mathrm{x}, \mathrm{y}\right)$............ $\frac{-x}{y}$
If you are in a different folder when you wish to use a function it must be accessed through the proper path name. The most
efficient method is to retrieve a function (or program) through 2 VAR-LINK.


The Numeric Solver can solve any multi-variable equation with one unknown
Example one: What is the height of a trapezoid with bases of measures 14 and 22, given that the area is 486 square units.

O9:

- type in equation لـ
- enter values for each variable, (except unknown)
- move cursor to unknown variable
- press F2 [Solve]


Example 2: The population of a country increases at a rate proportional to the existing population. If the population doubles in 20 years, what is the factor of proportionality (" $k$ ")?

## UNITS

In both Physics and Chemistry classes correct unit conversion is a necessary procedure. The 89 can do these computations. Should you have the need, specific user-defined units can be created (page 76 TI-89 guide book) The units menu is accessed by selecting 23 .


When 3is set for SI (metric system) the calculator automatically converts length units (whether feet, inches or kilometers etc) into meters. If 3 changed to ENG/US it converts length units into feet.


As with all other functions, the symbols and units can be typed directly on the entry line instead of going through the units menu (you just have to know the correct abbreviation for each unit). The underscore _ is obtained by pressing the green $\infty 3$ and the conversion operator $\mid$ by pressing 23.

Example: Change 50 miles/hour to the equivalent km/hour

$$
\text { keystrokes: } \quad \text { 50_mph } \mid \text { kmh ل..........80.4672_kph }
$$

## TEMPERATURE CONVERSIONS

|Syntax: tmpCnv(expression, _ 1 1st temp unit, _ ( $2^{\text {nd }}$ temp unit)
(is accessed by $2 \subseteq$ (the "with" operator)


## GRAPHING TECHNIQUES

The TI 89 can graph functions, parametric, polar, and differential equations. It also can graph sequences and in three dimensions. 3 page one accesses the various types of graphs.


## Graph Format



## FUNCTION GRAPHING 31:FUNCTION

Systems of equations

$$
\begin{array}{ll}
y \geq-2 x+4 & \text { style } 7: \text { Above } \\
y \leq \frac{1}{2} x-6 & \text { style } 8: \text { Below }
\end{array}
$$

Text added using Pen 7:Text


## Quick Center

If function traced off the top or bottom of the screen, press $\div$ to center viewing window on the cursor location

Shading Math C
between two functions
between a function and the x -axis
Finding the distance between two points 9: Distance
Measure the horizontal distance between two consecutive peaks of the sine curve.
Graphing a Family of curves
Enter a list in the expression. $\mathrm{y} 1=\{1,2,3,5,10\} \mathrm{x}^{\wedge} 2$

$$
\left.\mathrm{y} 2=\{1, .75, .5, .25, .1\} \mathrm{x}^{\wedge} 2 \text { (change style to Dot }\right)
$$

## Collecting Data Points

1. Display the graph
2. Display coordinates to collect
3. Press $\infty$ - puts data in Home screen history area
-or-
$\infty \beta$ - stores coordinates in a data variable named sysData
Drawing a line based on a Point and a slope
(From Graph screen) 6:DrawSlp
switches to Home screen and puts DrawSlp in entry line.
Syntex: $x, y$,slope $ل$

## Animating a Series of Graph Pictures

## CyclePic command

Uses a series of graph pictures that have the same base name and are sequentially numbered starting with 1 (pic1, pic2, pic2,...)

Syntex CyclePicpicNameString, n [,wait] [,cycles] [,direction]

## LINKING

Programs, functions can be send and received from another TI-89 or TI-92 .
HOW TO: Connect units by cable to the I/O ports
Open $2^{\circ}$ screen on both calculators
Receiving Unit
Link 2: Receive
WAITING TO RECEIVE and the BUSY indicator will be displayed in status line.
Sending Unit
Select variables to be sent using
Link 1: Send to TI-89/92 Plus -or- 3: Send to TI-92

## UPGRADING TO A NEWER VERSION

All memory is cleared on the receiving calculator when upgrading.
The product code updates the calculator and allows for Flash Applications to be received.


A:About - indicates current software version and serial number of your unit

