Activity overview

This activity is designed to introduce students to the concept of inequalities. Students will discover how to graph inequalities on a number line.

Concepts

\checkmark Inequalities
\checkmark Equations
\checkmark Number lines

Teacher preparation

This activity is designed to introduce students to the concept of inequalities. The file inequalities.tns should be pre-loaded on the handheld.
Classroom management tips
Students can navigate through the student file independently or in small groups and answer the questions in the document.

TI-Nspire Applications

\checkmark Calculator
\checkmark Question
\checkmark Graphs and Geometry

Step-by-step directions

Steps:

1. From the home screen, choose My Documents and navigate to the appropriate folder containing the .tns file inequalities. Highlight the file and press 滆. Choose whether or not to save changes to any previous document.

Screenshots

2. Page 1.1 is the title page for the activity. Press and ©t+1) to navigate through the document. Pressing \rightarrow will give you a thumbnail view of all pages in the document.
3. Remember these helpful hints.
4. Choose values that make the inequality true. You may need to press totrab to get to the calculator.
5. Choose the correct answer. You may need to press (tat) to get to the answer.

Choose a at least 3 values from the shaded part of the number line and substitute into the inequality $x>2$.

All the values that I choose from the shaded area made the inequality true.

O True
\bigcirc
False
6. Helpful info.
7. Analyze the graphs.
8. Remember this helpful tip.
9. Choose values that make the inequality true and or false. You may need to press (atr) to get to the calculator.

These three values satisfy the inequality $x>2$ because they result in true statements when you substitute the appropriate values.

All x-values in the shaded part of the number line satisfy the inequality $x>2$ and are therefore members of the solution set.

Now compare the graph of the inequality $x>2$ to that of $x \geq-3$. How are the graphs and inequalities similar? How are they different?

$-10-8-6-4-2 \quad 0 \quad 2 \quad 4 \quad 6810$
On the next page, you will need to enter the "greater than or equal to" sign in the Calculator application.

To do so, you can type ">" followed by "=" or simply press CTRL+[greater than].

Predict whether x-values from the shaded part of the graph will result in a true or false statement. Test your prediction by substituting three values.

10. Choose values that make the inequality true and or false. You may need to press totr to get to the calculator.
11. Choose values that make the inequality true and or false. You may need to press + trit to get to the calculator.
12. Read Carefully.
13. Drag the words to the correct boxes. You may need to press ${ }^{\mathrm{cm} / \text { tab }}$ to get to the words. Place the 4 cursor over the word. When you see a hand Σ, press the (2). The hand should close s on the word and you can use the $\downarrow \Delta \downarrow$ to move the word where needed.

Predict whether x-values from the unshadedpart of the graph will result in a true or false statement. Test your prediction by substituting three values.

Predict whether the x-value located at the closed circle will result in a true or false statement. Once more, test your prediction by substituting -3 into $x \geq-3$.

The value -3 satisfies the inequality because it results in a true statement when you substitute it into the inequality.

Since -3 is included in the solution set, this inequality is inclusive.

Drag the words true and false into the appropriate boxes representing the three parts of the graph.

14. Analyze the graphs.
15. Choose values that make the inequality true and or false. You may need to press (atr) (bab get to the calculator.
16. Choose values that make the inequality true and or false. You may need to press (ati) (bob to get to the calculator.
17. Choose values that make the inequality true and or false. You may need to press (att) (bob to get to the calculator.

Now compare the graph of the inequality $x>2$ to that of $x<5$. How are the graphs and inequalities similar?

Predict whether x-values from the shaded part of the graph will result in a true or false statement. Test your prediction by substituting three values.

Predict whether x-values from the unshaded part of the graph will result in a true or false statement. Test your prediction by substituting three values.

Predict whether the x-value located at the open circle will result in a true or false statement. Once more, test your prediction by substituting 5 into $x<5$.

18. Drag the words to the correct boxes. You may need to press tat to get to the words. Place the cursor over the word. When you see a hand Σ, press the (\%). The hand should close so on the word and you can use the $\downarrow \Delta \boldsymbol{*}$ to move the word where needed.
19. Analyze the graphs.
20. Choose values that make the inequality true or false. You may need to press (atr) to get to the calculator.
21. Choose values that make the inequality true or false. You may need to press (tab) to get to the calculator.

Drag the words true and false into the appropriate boxes representing the three parts of the graph. Is this inequality inclusive or noninclusive?

Now compare the graph of the inequality $x<5$ to that of $x \leq-1$. How are the graphs and inequalities similar?

Predict whether x-values from the shaded part of the graph will result in a true or false statement. Test your prediction by substituting three values.

Predict whether x-values from the unshadedpart of the graph will result in a true or false statement. Test your prediction by substituting three values.

22. Choose values that make the inequality true and or false. You may need to press totr to get to the calculator.
23. Drag the words to the correct boxes. You may need to press atrla to get to the words. Place the cursor over the word. When you see a hands, press the (3). The hand should close s on the word and you can use the $\downarrow \boldsymbol{\rightharpoonup}$ to move the word where needed.

Predict whether the x-value located at the closed circle will result in a true or false statement. Once more, test your prediction by substituting -1 into $x \leq-1$.

Drag the words true and false into the appropriate boxes representing the three parts of the graph. Is this inequality inclusive or noninclusive?

Now you will apply what you have learned by graphing four inequalities.

- First, determine whether the shaded part will be on the left or right side of the number line.
- Then grab one of the open circles near the left or right end of the number line and drag it to the appropriate position.
- If the inequality is inclusive, you will need to change the open circle to a closed circle. To do so, hover the cursor over the open circle until it begins to flash, and press CTRL+MENU. Select Attributes, press left on the NavPad, and press ENTER.

26. Determine whether the shaded part will be on the left or right side of the number line. Grab one of the open circles near the left or right end of the number line and drag it to the appropriate position.
If the inequality is inclusive, you will need to change the open circle to a closed circle. To do so, hover the \uparrow cursor over the open circle until it begins to flash, and press

27. Determine whether the shaded part will be on the left or right side of the number line. Grab one of the open circles near the left or right end of the number line and drag it to the appropriate position.
If the inequality is inclusive, you will need to change the open circle to a closed circle. To do so, hover the \uparrow cursor over the open circle until it begins to flash, and press

Graph each inequality.

Graph each inequality.

Student TI-Nspire Document inequalities.tns.

