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Example:
  

(−1)k +1

k2
k =1

∞
∑

To show the sequence 
  
ak =

(−1)k +1

k2  and the sequence of partial sums 
  
Sn = ak

k =1

n

∑ :

TI-83 TI-89
nMin = 1

u(n) = (-1)^(n+1)/n^2

u(nMin)=

v(n) = v(n-1)+ (-1)^(n+1)/n^2

v(nMin) = 1

u1 = (-1)^(n+1)/n^2

ui1=

u2 = u2(n-1)+(-1)^(n+1)/n^2

ui2 = 1

Notes:
(1) Since u is given explicitly, u(nmin) = ui1 should be left blank.

(2) v(nmin) = ui2 should be equal to the value of a1 = S1 for your sequence.
(3) The x-window should agree with the n’s.
(4) The y-window should appropriate for the values of terms of your sequence and

series.

TI-83 TI-89
X1T = T

Y1T = (-1)^(T+1)/T^2

X2T = T

Y2T = sum(seq(Y1T,T,1,T))

xt1 = t

yt1 = (-1)^(t + 1)/t^2

xt2 = t

yt2 = sum(seq(yt1(t),t,1,t))
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Notes for skeptics:
(1) Here, the  t and x windows should be the same, or at least mildly close.
(2) t-step should equal 1.
(3) The sum/sequence can take a while to calculate, depending upon the sequence

you choose and how many terms are to be considered.
(4) In this mode, it is not necessary to type the sequence twice.  And twice can be

annoying.  Also, the necessary variables are easier to hit – no alpha or 2nd key
required.

TI – 89
F3 → 9: taylor(
taylor(expr, var, order [, point])   where “point” is optional, assumed to be 0 unless

stated otherwise
Ex 1: Taylor series for sinx, degree 7, centered at a = 0

taylor(sin(x), x, 7)
Ex 2: Taylor series for lnx, degree 5, centered at a = 1

taylor(ln(x), x, 5, 1)

Wonderful for animations:
Graphing Calculator  (software) www.pacifict.com

For example, enter the functions  y = sinx  and y =
(−1)k x2k +1

(2k +1)!k = 0

n

∑   and set the slider  to n:

0 → 10 with 10 steps.

Tails with Mathematica  (or something close)
One interesting way of sensing how fast an infinite series converges is to sum out a
ways, say to some finite value k, and compare this to the infinite sum.

Consider the three convergent series 
  
an =

1

en +1
,  

  
bn =

1

n3 + 1
,  and  

  
cn =

1

n2 +1
.  Find the

infinite sum.  Then find the sum from 1 to k, where k is some constant.  How large does
k have to be for each series in order to get accuracy to 4 decimal places?  You may be
surprised.
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Alternating Series

Defn:  If an > 0 , an alternating series is a series of the form
a1 - a2 + a3 - a4 + ...   OR   - a1 + a2 - a3 + a4 - ...

Ex: Consider  
  

(−1)n +1

nn=1

∞

∑ = 1 −
1

2
+

1

3
−

1

4
+K,  the alternating harmonic series.

Find S1, S2, S3, ..., S10  to two decimal places, plotting each on the line below.  (This
has been started for you.)

0.5

S 2

1.0

S 1

Describe the pattern of the Sn.

Do you think the series converges?

Where is S?  (Write an inequality involving S.)

Approximating Alternating Series

Consider the alternating series  a1 - a2 + a3 - a4 + ....  with  an → 0.  Remember
that all an > 0.  Fill in the distances (positive) given by each arrow.

S1S 2 S 3
S 4 S 5

S S6

distance = 

distance = 

distance = 

distance = 

distance = 
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Usually, it is impossible for us to calculate S directly.  Therefore, we wish to
approximate S by using one of the Sn.  For example, let's use S5.  The next real
question or problem is to find out just how good S5 is as an approximation.  In other
words, we need to know how close S5 is to S.

We can express this distance as  | S - S5 |.  More generally, we need to look at
the size of  | S - Sn |.  Since the Sn oscillate in smaller and smaller steps around S, then
S is between Sn and Sn+1 for all n.

Consider this arbitrary stage of the diagram above.
an+1

S n S Sn+1
| S - Sn |

Here, we can see that  | S - Sn | < _______.  More specifically, we have

| S - S3 | < _______,  | S - S5 | < ________, and  | S - S20 | < ________.

Ex: Given the alternating harmonic series  
(−1)n +1

nn=1

∞

∑  ,

(a) if we approximate S by using 10 terms, what will be the magnitude of the
error?  In other words, how large is | S - S10 | ?

Find S10 and write an inequality about S.

(b) How many terms are necessary to be sure that the error is less than .01 ?
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Conditional Convergence
Here's a neat little "proof" of 1 = 2.   (This is at a slightly higher level than the one often
seen at the Algebra I level.)  Discuss the concept of conditional convergence before
doing this "proof."  This should convince students that these series must not be
approached too casually!

Let S   = 1 −
1

2
+

1

3
−

1

4
+

1

5
−

1

6
+

1

7
−

1

8
+

1

9
−

1

10
+

1

11
−

1

12
+

1

13
−

1

14
+

1

15
−

1

16
+ . . .

= 1 −
1

2
−

1

4
+

1

3
−

1

6
−

1

8
+

1

5
−

1

10
−

1

12
+

1

7
−

1

14
−

1

16
+

1

9
− . . .
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1

2
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4
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1
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1
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7
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1
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1
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+

1

9
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1
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 −

1

20
+ . . .

=
1

2
−

1

4
+

1

6
−

1

8
+

1

10
−

1

12
+

1

14
−

1

16
+

1
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−

1

20
+. . .

=
1

2
1 −

1

2
+

1

3
−

1

4
+

1

5
−

1

6
+

1

7
−

1

8
+

1

9
−

1

10
+. . .

 
 

 
 

=
1

2
 S

⇒ S =
1

2
S ⇒ 1 =

1

2
⇒ 2 = 1

Theorem:  Any conditionally convergent series can be rearranged to add up to any given
number.
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Graphing Pairs

(1) Use a window with x ∈ [-3, 3] and y ∈ [-3, 3] to plot the graphs of the following
functions:

ƒ(x) = sinx   and   g(x) = x ⋅ cosx( )1 / 3

Make a careful sketch. Describe what happens.  (Where are
they close?  How close?)

(2) Use a window with x ∈ [-2, 5] and y ∈ [-1.5, 1.5] to plot the graphs of the
following functions:

ƒ(x) = sinx   and   g(x) = -0.4177x2 + 1.3122x - 0.0505

Make a careful sketch. Describe what happens.

(3) Use a window with x ∈ [-4, 4] and y ∈ [-2, 2] to plot the graphs of the following
functions:

ƒ(x) = sinx   and   g(x) =
60x − 7x3

60 + 3x2

Make a careful sketch. Describe what happens.



RD, IMSA p.8

Series  1
(1) Let  ƒ(x) = ln(1 + x)  and let  g(x) = a0 + a1x + a2x2 + a3x3.  Set  ƒ(0) = g(0), and

set the first three derivatives evaluated at x = 0 equal to each other in order to
find the values of the ai and the polynomial g(x).  (In other words, set  ƒ (k) (0) = g
(k) (0)  for k = 0, 1, 2, 3.)

(2)  Find both ƒ(a) and g(a) for each of the following values of a.  Are they very close
to each other?  When are the values closer?

ƒ(a) g(a)
a = 0.5

a = 0.1

(3) Use your calculator to graph both functions ƒ and g.  Try different windows to get
a good view and copy the graph below.  On what interval does g seem to be
useful as an approximation of ƒ?

(4) Now sketch a graph of R(x) = | ƒ(x) - g(x) |.  This represents the remainder, or the
distance between the function ƒ and its approximation g.  Describe the graph and
what this says about g as an approximation.
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(5) Extend g by continuing the pattern of the coefficients of g to form an infinite
series which will approximate the function ƒ.  Use an appropriate test to
determine the open interval for which this series converges.

Check the endpoints of your interval to determine whether the series will also
converge at those values.

(6) If we use only the three terms of our polynomial g — the first three terms of our
infinite series — and we use x = 0.75, find an upper bound for the error.  Find S3
and use this to write an inequality for S, the infinite sum.

(7) Again using these three terms and assuming x > 0, what are the possibilities for x
if the error is to be less than 0.005?

 (8) If  0 < x < 0.5, how many terms of the series do you have to use in order to get
an error which is less than 0.001 ?
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Series 2

Assuming we know something about ƒ(x) = cos x ...
We found a polynomial which can be extended to give

  P(x) =  
  
1 −

x2

2!
+

x4

4!
−

x6

6!
+K =

(−1)n x2n

(2n)!n =0

∞

∑
Let  Pn(x)  refer to the polynomial approximating the function ƒ which has  "order

of contact n" at a point x = a.    That is to say,  Pn(k)(a) = ƒ(k)(a)  for k = 0, 1, 2, 3, ... , n,
and here we have a = 0.

For example, with ƒ(x) = cosx, we have

P4(x) =  1 −
x2

2!
+

x4

4!
   and   P7(x) =  1 −

x2

2!
+

x4

4!
−

x6

6!

Note that “n” can cause problems.  Does it mean the nth term?  the order of contact?
the value of n in the summation?  Just be careful!

(1) If we choose P4(x), giving us 3 (non-zero) terms, evaluate ƒ(x) and P4(x) for the
following values of x.

ƒ(x) g(x) = P4(x)
x = 1

x = 0.5

For what values of x does P4 seem to be a good approximation of ƒ?

(2) Again using 3 terms, let  x = 1.  How big will the error be?  This time, do this two
ways and note the difference.
(a)  Find  | cos1 - P4(1) |.   (Simply

evaluate cos1 on your calculator.)
(b)  Use the alternating series error

approximation.

(3) Still using 3 terms of P, what are the possibilities for x if the error is to be less
than 0.00005?
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Set the window on the calculator so that  -7 ≤ x ≤ 7  and  -2 ≤ y ≤ 2.
(4) Plot  P4(x)  and  ƒ(x).  Sketch the graphs below.

For what values of x does P4  seem to be a good approximation of  ƒ ?

(5) Plot  P6(x)  and  ƒ(x).  Sketch the graphs below.

For what values of x does  P6  seem to be a good approximation of  ƒ ?

(6) Plot  P10(x)  and  ƒ(x).  Sketch the graphs below.

For what values of x does  P10  seem to be a good approximation of  ƒ ?

(7) Plot  P14(x)  and  ƒ(x).  Sketch the graphs below.

For what values of x does  P14  seem to be a good approximation of  ƒ ?
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(8) Based on these graphs, can you make any guesses about the values of x for
which the infinite series P converges?

Do you think that there is a value of n such that Pn(x) will have an error less than
0.0001 for all x in the interval  -1000 ≤ x ≤ 1000?  Why or why not?

(9) Determine the values of x for which the infinite series converges by using an
appropriate test.

(10) Compare this result to the intervals found for y = ln(1 + x) and y = tan-1x.

Can you think of any possible explanations for this distinction?

More on error analysis...
(11) Using P14(x) and x = 6, what will the error be?

(12) Again using P14(x), what are the possibilities for x if the error is to be less than
0.0005?

(13) If x = 4, how many terms are necessary to be sure that the error is less than .01?
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Taylor Series 3

It's time to generalize the process.  Assume we have an arbitrary function ƒ, and
assume that at a = 0, ƒ(0) and the derivatives ƒ’(0), ƒ”(0), ... , and ƒ(n)(0) all exist.

Let  pn(x) = a0 + a1x + a2x2 + a3x3 + ... + anxn   be an nth degree polynomial.

If we set pn
(k)(0) = ƒ(k)(0)  for k = 0, 1, 2, ..., n, we can solve for ak, still for k = 0, 1, ..., n.

(1) Set  ƒ(0) = pn(0) to find a0 in terms of ƒ(0).

(2) Set  ƒ’(0) = pn’(0)  to find a1 in terms of ƒ'(0).

(3) Set  ƒ''(0) = pn''(0)  to find a2.

(4) Set  ƒ’’’(0) = pn’’’(0)  to find a3.

(5) Find  pn(n)(x) and set  ƒ(n)(0) = pn(n)(0)  to find an in terms of ƒ(n)(0).

(6) Write the polynomial pn(x) in terms of the derivatives of ƒ evaluated at 0.

(This is called either the nth order Taylor polynomial at  a = 0 or the nth order
Maclaurin polynomial for the function ƒ.)
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Series 4
Popular Maclaurin Series

and their intervals of convergence!

Write the first four terms of the following series and state the interval of
convergence.  Try do do these without looking them up.

Interval

ex =

sin x =

cos x =

1
1 − x

  =

 (1) Use substitution to find series for each of the following.

(a) sin 3x =

(b)  e4x =

(c) cos (x/2) =

(d)
1

e2x   =

(e) ex2  =

Please note that the interval of convergence for all of these is still ℜ.
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(2) Write the series for  
1

1 − 2x
.  Find the interval of convergence, again using

substitution.

Write the series for  
1

1 + 3x
.  Find the interval of convergence.

Write the series for  
3

3 − 2x
 by writing this as 

1

1 − 2x / 3
.  Find the interval of

convergence.

(3) Logarithms.  (You may need to look this up or derive this.)

Series Interval of convergence

ln (1 + x) =

ln (1 + 5x) =

ln (1 - x/3) =
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Series 5
New from Old
Complete the right side of the equations below with the appropriate series and the
interval of convergence if requested.

(1) sin x =

Differentiate both sides.

Does this "work"?

Differentiate both sides again.  Does this still "work"?

(2) ex =

Integrate both sides.

Does this "work"?  What do you always remember to include when integrating?

(3) Interval of convergence
1

1 − x
  =

1

1 + x
  =

ln (1 + x) =

Note the endpoints, particularly on the integral.
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(4) Interval of convergence
1

1 − x
  =

1

1 + x2   =

tan-1x =

Note that this is the second method we've seen for finding the Maclaurin series
for tan-1x.  Any preference?

Theorem:  (Simplified)  Taylor series may be differentiated or integrated term by term
and will represent the appropriate function on the same open interval.
Note:  Convergence or divergence may change at each endpoint.

(5) Find, using simple multiplication.
x2ex =

4x cos(2x) =

(6) Multiplication of series.  Find  the series for  
ex

1 - x   by multiplying enough terms of

each of the two series together.  (Be careful.  Think ahead.)
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(7) Let  ƒ(x) =
5x −1

x2 − x − 2
.  Finding the derivatives of this to create the series directly

would be somewhat unpleasant.  Try this approach:
(a) Use partial fractions to decompose ƒ.

(b) Write the series for each of the two partial fractions.  (One may require a
bit of sneakiness.)

(c) Add and simplify.

(8) Let's try that last function by an additional method:  Long division.  Find three
terms.

−2 − x + x2 −1+ 5x)
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In no order whatsoever...

(1) Use series to evaluate the limit: lim
x →0

1− cos(3x)

x2

Use l’Hôpital’s rule to check your work below: lim
x →0

1− cos(3x)

x2

(2) If a Taylor series for a function ƒ converges on the interval [-1, 5),
find the interval of convergence for ƒ(2x).

find the interval of convergence for ƒ(-x).

(3) The Maclaurin series for a function is given below.
x − 1

x2 − 2x − 3
=

1

3
−

5x

9
+

10x 2

27
−

41x3

81
+ ...

Use this to find the first four terms of the series for the following:
1

2
ln x2 − 2x − 3( )  =

(4) Write the first four terms of the series for each of the following functions.

sin(x/2),     
2

ex ,     
x

1 − 2x

(5) Give an example of a series which converges on each of the following intervals.
[-3, 3) [-1, 4]
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(6) Given  
(−1)k +1

k2 + 5k =1

∞

∑ ,

Estimate the error if 20 terms are used.

Find S20 and then find an interval for S.  (That is, find upper and lower bounds for

S using S20.)

How many terms are necessary to be sure that the error is less than .01?

(7) If  there is a Maclaurin series for the function ƒ, and ƒ(n) (x) ≤ n + 2 for all x,  find
an upper bound for the error using terms through n = 6 of the series when
approximating ƒ(1.5).

 (8) If 4 non-zero terms are used to approximate cos2, find an upper bound for the
error.

(9) If 3 non-zero terms are used to approximate sinx with an error less than .001,
what values of x may be used?

(10) To approximate e.7 with 5 terms (through n = 4), find an upper bound for the
error.

(11) The Maclaurin series for some function ƒ  is

f (x) =
1

2
+

x

3!
+

x2

4!
+ . . .+

xn

(n + 2)!
+ . . .

Find ƒ’(0). Find ƒ (8) (0).

(12) State (only) whether each series is absolutely convergent, conditionally
convergent or divergent.

(−1)k +1k

k3 +1
∑ (−1)k

k ⋅ ln k
∑ (−1)n nsin(1/ n)( )∑

(−2) k

k!
∑ (−1)m +1 ⋅ m + 1m∑

(13) Find the interval of convergence.  (Show work carefully.)
(x + 3)k

k ⋅4 k
k =1

∞

∑

(14) Give an example of a series which converges on [2, 10].
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(15) Given  
(−1)k +1

k2 + 3k =1

∞

∑ .  (Show set-up clearly, particularly for calculator work.)

(a) Find an upper bound for the error if 8 terms are used.
(b) Find an inequality which bounds S.
(c) How many terms must be used to be sure the error is less than 0.005?

(16) Give an example of an alternating series...
which is conditionally convergent.
which is divergent.
which is absolutely convergent.

 (17) For the series 
    

xn
n =1

∞

∑  the partial sums are Sn = 
    

3n
n + 2

.  Find x4.

 Find the sum of the series, if it converges.

(18) If terms through n = 10 are used to approximate e2.8, find an upper bound for the
error.

(19) Find the Maclaurin series for each of the following.  Show 4 terms.

sin(x2) = 
x2

ex   =
3

1 + 2x
  =

(20) Approximate  
dx

1 + x3
0

0.5⌠ 
⌡   with an error less than .001.

(21) The Maclaurin series for some function k is

k(x) =
x

2!
+

2x 2

3!
+

3x3

4!
+ ... +

nxn

(n +1)!
+ ...

Find k’(0). Find k (12) (0).

(22) Determine the values of x for which the series  5 3 + x( )k

k =0

∞

∑  converges.  Then find

S in terms of x.  (Note:  This problem is meant to be given while studying
geometric series, before the ratio test is introduced.)

(23) Can the ratio test be used on  
1

(ln k)2
k =2

∞

∑  ?  Why or why not?

Can the limit comparison test be used on  
2 + sin k

k3
k =1

∞

∑  ? Why or why not?
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(24) Estimate  
1

k3 + kk =1

∞

∑   on your calculator.  (Indicate your method.)  Do you think

this is a good estimate?  Why or why not?  How could you check this?

AP problems – all BC
1975:4,  1976:7,  1977:5,  1978:5,  1979:4,  1980:3,  1981:3,  1982:5,  1983:5,  1984:4,
1986:5,  1987:4,  1988:4,  1990:5,  1991:5,  1992:6,  1993:5,  1994:5,  1995:4,  1996:2,
1997:2,  1998:3,  1999:4,  2000:3

1987:4

(a) Find the first five terms in the Taylor series about x = 0 for  f (x) =
1

1− 2x
.

(b) Find the interval of convergence for the series in part (a).
(c) Use partial fractions and the result from part (a) to find the first five terms in the

Taylor series about x = 0 for g(x) =
1

(1− 2x)(1− x)
.

1993:5

Let ƒ be the function given by ƒ(x) = e x/2.
(a) Write the first four nonzero terms and the general term for the Taylor series

expansion of ƒ(x) about x = 0.
(b) Use the result from part (a) to write the first three nonzero terms and the general

term of the series expansion about x = 0 for g(x) =
ex / 2 −1

x
.

(c) For the function g in part (b), find g’(2) and use it to show that  
n

4(n +1)!n=1

∞

∑ =
1

4
.


