Note: This guidebook for the TI-84 Plus or TI-84 Plus Silver Edition with operating system (OS) version 2.55MP. If your calculator has a previous OS version, your screens may look different and some features may not be available. You can download the latest OS education.ti.com/guides.
Important Information

Texas Instruments makes no warranty, either express or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis. In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the purchase price of this product. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

© 2004–2010 Texas Instruments Incorporated
Vernier EasyData, Vernier LabPro, and Vernier Go! Motion are a trademarks of Vernier Software & Technology.
Contents

Important Information .. ii

Chapter 1:

Operating the TI-84 Plus Silver Edition ... 1

- Documentation Conventions ... 1
- TI-84 Plus Keyboard .. 1
- Turning On and Turning Off the TI-84 Plus .. 3
- Setting the Display Contrast .. 4
- The Display ... 5
- Interchangeable Faceplates ... 8
- Using the Clock .. 9
- Entering Expressions and Instructions .. 11
- Setting Modes .. 14
- Using TI-84 Plus Variable Names .. 19
- Storing Variable Values .. 20
- Recalling Variable Values .. 21
- Scrolling Through Previous Entries on the Home Screen ... 22
- ENTRY (Last Entry) Storage Area .. 22
- TI-84 Plus Menus ... 25
- VARS and VARS Y-VARS Menus ... 27
- Equation Operating System (EOS™) .. 29
- Special Features of the TI-84 Plus ... 30
- Other TI-84 Plus Features .. 31
- Error Conditions ... 33

Chapter 2:

Math, Angle, and Test Operations ... 35

- Getting Started: Coin Flip ... 35
- Keyboard Math Operations .. 36
- MATH Operations ... 38
- Using the Equation Solver .. 42
- MATH NUM (Number) Operations ... 45
- Entering and Using Complex Numbers .. 50
- MATH CPX (Complex) Operations .. 54
- MATH PRB (Probability) Operations ... 56
- ANGLE Operations .. 59
- TEST (Relational) Operations .. 62
- TEST LOGIC (Boolean) Operations ... 63

Chapter 3:

Function Graphing ... 65

- Getting Started: Graphing a Circle .. 65
- Defining Graphs ... 66
- Setting the Graph Modes ... 67
- Defining Functions .. 68
- Selecting and Deselecting Functions ... 69
- Setting Graph Styles for Functions .. 71
- Setting the Viewing Window Variables ... 73
- Setting the Graph Format .. 74
- Displaying Graphs ... 76
- Exploring Graphs with the Free-Moving Cursor ... 78
- Exploring Graphs with TRACE .. 78
- Exploring Graphs with the ZOOM Instructions .. 80
- Using ZOOM MEMORY ... 85
- Using the CALC (Calculate) Operations .. 87
Chapter 4:
Parametric Graphing ... 91
Getting Started: Path of a Ball .. 91
Defining and Displaying Parametric Graphs 93
Exploring Parametric Graphs .. 95

Chapter 5:
Polar Graphing .. 97
Getting Started: Polar Rose ... 97
Defining and Displaying Polar Graphs 98
Exploring Polar Graphs ... 100

Chapter 6:
Sequence Graphing .. 102
Getting Started: Forest and Trees .. 102
Defining and Displaying Sequence Graphs 103
Selecting Axes Combinations .. 107
Exploring Sequence Graphs ... 107
Graphing Web Plots ... 109
Using Web Plots to Illustrate Convergence 110
Graphing Phase Plots ... 111
Comparing TI-84 Plus and TI-82 Sequence Variables 113
Keystroke Differences Between TI-84 Plus and TI-82 114

Chapter 7:
Tables .. 115
Getting Started: Roots of a Function 115
Setting Up the Table ... 116
Defining the Dependent Variables 117
Displaying the Table ... 118

Chapter 8:
Draw Instructions .. 121
Getting Started: Drawing a Tangent Line 121
Using the DRAW Menu .. 122
Clearing Drawings .. 123
Drawing Line Segments ... 124
Drawing Horizontal and Vertical Lines 125
Drawing Tangent Lines ... 126
Drawing Functions and Inverses ... 127
Shading Areas on a Graph .. 128
Drawing Circles .. 128
Placing Text on a Graph .. 129
Using Pen to Draw on a Graph .. 130
Drawing Points on a Graph .. 131
Drawing Pixels .. 132
Storing Graph Pictures (Pic) .. 134
Recalling Graph Pictures (Pic) ... 135
Storing Graph Databases (GDB) .. 135
Recalling Graph Databases (GDB) 136

Chapter 9:
Split Screen ... 137
Getting Started: Exploring the Unit Circle 137
Using Split Screen ... 138
Chapter 10:
Matrices ... 143
Getting Started: Using the MTRX Shortcut Menu .. 143
Getting Started: Systems of Linear Equations ... 144
Defining a Matrix ... 145
Viewing and Editing Matrix Elements ... 146
Using Matrices with Expressions .. 148
Displaying and Copying Matrices .. 149
Using Math Functions with Matrices ... 151
Using the MATRX MATH Operations ... 154

Chapter 11:
Lists ... 161
Getting Started: Generating a Sequence .. 161
Naming Lists ... 162
Storing and Displaying Lists ... 163
Entering List Names .. 164
Attaching Formulas to List Names ... 165
Using Lists in Expressions ... 167
LIST OPS Menu .. 168
LIST MATH Menu .. 175

Chapter 12:
Statistics ... 178
Getting Started: Pendulum Lengths and Periods 178
Setting Up Statistical Analyses ... 184
Using the Stat List Editor .. 185
Attaching Formulas to List Names .. 188
Detaching Formulas from List Names .. 190
Switching Stat List Editor Contexts .. 190
Stat List Editor Contexts .. 192
STAT EDIT Menu .. 193
Regression Model Features .. 195
STAT CALC Menu .. 198
Statistical Variables .. 206
Statistical Analysis in a Program .. 207
Statistical Plotting ... 208
Statistical Plotting in a Program .. 212

Chapter 13:
Inferential Statistics and Distributions .. 215
Getting Started: Mean Height of a Population 215
Inferential Stat Editors ... 218
STAT TESTS Menu .. 221
Inferential Statistics Input Descriptions ... 239
Test and Interval Output Variables ... 240
Distribution Functions ... 241
Distribution Shading ... 248

Chapter 14:
Applications ... 251
The Applications Menu ... 251
Chapter 15: CATALOG, Strings, Hyperbolic Functions

- Browsing the TI-84 Plus CATALOG
- Entering and Using Strings
- Storing Strings to String Variables
- String Functions and Instructions in the CATALOG
- Hyperbolic Functions in the CATALOG

Chapter 16: Programming

- Getting Started: Volume of a Cylinder
- Creating and Deleting Programs
- Entering Command Lines and Executing Programs
- Editing Programs
- Copying and Renaming Programs
- PRGM CTL (Control) Instructions
- PRGM I/O (Input/Output) Instructions
- Calling Other Programs as Subroutines
- Running an Assembly Language Program

Chapter 17: Activities

- The Quadratic Formula
- Box with Lid
- Comparing Test Results Using Box Plots
- Graphing Piecewise Functions
- Graphing Inequalities
- Solving a System of Nonlinear Equations
- Using a Program to Create the Sierpinski Triangle
- Graphing Cobweb Attractors
- Using a Program to Guess the Coefficients
- Graphing the Unit Circle and Trigonometric Curves
- Finding the Area between Curves
- Using Parametric Equations: Ferris Wheel Problem
- Demonstrating the Fundamental Theorem of Calculus
- Computing Areas of Regular N-Sided Polygons
- Computing and Graphing Mortgage Payments

Chapter 18: Memory and Variable Management

- Checking Available Memory
- Deleting Items from Memory
- Clearing Entries and List Elements
- Archiving and UnArchiving Variables
Chapter 1: Operating the TI-84 Plus Silver Edition

Documentation Conventions

In the body of this guidebook, TI-84 Plus refers to the TI-84 Plus Silver Edition, but all of the instructions, examples, and functions in this guidebook also work for the TI-84 Plus. The two graphing calculators differ only in available RAM memory, interchangeable faceplates, and Flash application ROM memory. Sometimes, as in Chapter 19, the full name TI-84 Plus Silver Edition is used to distinguish it from the TI-84 Plus.

Screen shots were taken using OS version 2.53MP and higher in either MathPrint™ or Classic mode. All features are available in both modes; however, screens may look slightly different depending on the mode setting. Many examples highlight features that are not available in previous OS versions. If your calculator does not have the latest OS, features may not be available and your screens may look different. You can download the latest OS from education.ti.com.

A new MODE menu item, STAT WIZARDS is available with OS version 2.55MP for syntax entry help for commands and functions in the STAT CALC menu, DISTR DISTR menu, DISTR DRAW menu and the seq(function (sequence) in the LIST OPS menu. When selecting a supported statistics command, regression or distribution with the STAT WIZARDS setting ON: (the default setting) a syntax help (wizard) screen is displayed. The wizard allows the entry of required and optional arguments. The function or command will paste with the entered arguments to the Home Screen history or in most other locations where the cursor is available for input. If a command or function is accessed from [CATALOG] the command or function will paste without wizard support. Run the Catalog Help application ([APPS]) for more syntax help when needed. APPS

TI-84 Plus Keyboard

Generally, the keyboard is divided into these zones: graphing keys, editing keys, advanced function keys, and scientific calculator keys.

Keyboard Zones

Graphing — Graphing keys access the interactive graphing features. The third function of these keys ([ALPHA] [F1]-[F4]) displays the shortcut menus, which include templates for fractions, n/d, quick matrix entry, and some of the functions found on the MATH and VARS menus.

Editing — Editing keys allow you to edit expressions and values.

Advanced — Advanced function keys display menus that access the advanced functions.

Scientific — Scientific calculator keys access the capabilities of a standard scientific calculator.
Using the Color-Coded Keyboard

The keys on the TI-84 Plus are color-coded to help you easily locate the key you need.

The light colored keys are the number keys. The keys along the right side of the keyboard are the common math functions. The keys across the top set up and display graphs. The \texttt{APPS} key provides access to applications such as the Inequality Graphing, Transformation Graphing, Conic Graphing, Polynomial Root Finder and Simultaneous Equation Solver, and Catalog Help.

The primary function of each key is printed on the keys. For example, when you press \texttt{MATH}, the \texttt{MATH} menu is displayed.

Using the \texttt{2nd} and \texttt{ALPHA} Keys

The secondary function of each key is printed above the key. When you press the \texttt{2nd} key, the character, abbreviation, or word printed above the other keys becomes active for the next keystroke. For example, when you press \texttt{2nd} and then \texttt{MATH}, the \texttt{TEST} menu is displayed. This guidebook describes this keystroke combination as \texttt{2nd [TEST]}.

Many keys also have a third function. These functions are printed above the keys in the same color as the \texttt{ALPHA} key. The third functions enter alphabetic characters and special symbols as well as access SOLVE and shortcut menus. For example, when you press \texttt{ALPHA} and then \texttt{MATH}, the letter \texttt{A} is entered. This guidebook describes this keystroke combination as \texttt{ALPHA [A]}.

If you want to enter several alphabetic characters in a row, you can press \textbf{[2nd]} \textbf{[A-LOCK]} to lock the alpha key in the On position and avoid having to press \textbf{[ALPHA]} multiple times. Press \textbf{[ALPHA]} a second time to unlock it.

\textbf{Note}: The flashing cursor changes to \textbf{Ā} when you press \textbf{[ALPHA]}, even if you are accessing a function or a menu.

\section*{Turning On and Turning Off the TI-84 Plus}

\subsection*{Turning On the Graphing Calculator}

To turn on the TI-84 Plus, press \textbf{[ON]}. An information screen displays reminding you that you can press \textbf{[ALPHA] [F1] - [F4]} to display the shortcut menus. This message also displays when you reset RAM.

- To continue but not see this information screen again, press \textbf{1}.
- To continue and see this information screen again the next time you turn on the TI-84 Plus, press \textbf{2}.
- If you previously had turned off the graphing calculator by pressing \textbf{[2nd] [OFF]}, the TI-84 Plus displays the home screen as it was when you last used it and clears any error. (The information screen displays first, unless you chose not to see it again.) If the home screen is blank, press \textbf{a} to scroll through the history of previous calculations.
- If Automatic Power Down™ (APD™) had previously turned off the graphing calculator, the TI-84 Plus will return exactly as you left it, including the display, cursor, and any error.
• If the TI-84 Plus is turned off and connected to another graphing calculator or personal computer, any communication activity will "wake up" the TI-84 Plus.

To prolong the life of the batteries, APD™ turns off the TI-84 Plus automatically after about five minutes without any activity.

Turning Off the Graphing Calculator

To turn off the TI-84 Plus manually, press \(\text{\texttt{2nd}} \text{[Off]} \).

• All settings and memory contents are retained by the Constant Memory™ function.
• Any error condition is cleared.

Batteries

The TI-84 Plus uses five batteries: four AAA alkaline batteries and one button cell backup battery. The backup battery provides auxiliary power to retain memory while you replace the AAA batteries. To replace batteries without losing any information stored in memory, follow the steps in Appendix C.

Setting the Display Contrast

Adjusting the Display Contrast

You can adjust the display contrast to suit your viewing angle and lighting conditions. As you change the contrast setting, a number from 0 (lightest) to 9 (darkest) in the top-right corner indicates the current level. You may not be able to see the number if contrast is too light or too dark.

Note: The TI-84 Plus has 40 contrast settings, so each number 0 through 9 represents four settings.

The TI-84 Plus retains the contrast setting in memory when it is turned off.

To adjust the contrast, follow these steps.

- Press \(\text{\texttt{2nd}} \text{[Adjust]} \) to darken the screen one level at a time.
- Press \(\text{\texttt{2nd}} \text{[Adjust]} \) to lighten the screen one level at a time.

Note: If you adjust the contrast setting to 0, the display may become completely blank. To restore the screen, press \(\text{\texttt{2nd}} \text{[Adjust]} \) until the display reappears.

When to Replace Batteries

When the batteries are low, a low-battery message is displayed when you turn on the graphing calculator.

To replace the batteries without losing any information in memory, follow the steps in Appendix C.
Generally, the graphing calculator will continue to operate for one or two weeks after the low-battery message is first displayed. After this period, the TI-84 Plus will turn off automatically and the unit will not operate. Batteries must be replaced. All memory should be retained.

Note:

- The operating period following the first low-battery message could be longer than two weeks if you use the graphing calculator infrequently.
- Always replace batteries before attempting to install a new operating system.

The Display

Types of Displays

The TI-84 Plus displays both text and graphs. Chapter 3 describes graphs. Chapter 9 describes how the TI-84 Plus can display a horizontally or vertically split screen to show graphs and text simultaneously.

Home Screen

The home screen is the primary screen of the TI-84 Plus. On this screen, enter instructions to execute and expressions to evaluate. The answers are displayed on the same screen. Most calculations are stored in the history on the home screen. You can press \[\text{ } \] and \[\] to scroll through the history of entries on the home screen and you can paste the entries or answers to the current entry line.

Displaying Entries and Answers

- When text is displayed, the TI-84 Plus screen can display a maximum of 8 lines with a maximum of 16 characters per line in Classic mode. In MathPrint™ mode, fewer lines and fewer characters per line may be displayed.
- If all lines of the display are full, text scrolls off the top of the display.
 - To view previous entries and answers, press \[\text{ } \].
 - To copy a previous entry or answer and paste it to the current entry line, move the cursor to the entry or answer you want to copy and press [ENTER].

 Note: List and matrix outputs cannot be copied. If you try to copy and paste a list or matrix output, the cursor returns to the input line.
- If an expression on the home screen, the Y= editor (Chapter 3), or the program editor (Chapter 16) is longer than one line, it wraps to the beginning of the next line in Classic mode. In MathPrint™ mode, an expression on the home screen or Y= editor that is longer than one line scrolls off the screen to the right. An arrow on the right side of the screen indicates that you can scroll right to see more of the expression. In numeric editors such as the window screen (Chapter 3), a long expression scrolls to the right and left in both Classic and MathPrint™ modes. Press [2nd] \[\] to move the cursor to the end of the line. Press [2nd] \[\] to move the cursor to the beginning of the line.
When an entry is executed on the home screen, the answer is displayed on the right side of the next line.

\[
\log_2(8) = 3.0 \quad \text{Answer}
\]

The mode settings control the way the TI-84 Plus interprets expressions and displays answers.

If an answer, such as a list or matrix, is too long to display entirely on one line, an arrow (MathPrint™) or an ellipsis (Classic) is displayed to the right or left. Press \(\text{ENTRY} \) and \(\text{ENTRY} \) to display the answer.

MathPrint™

\[
\begin{align*}
\{1, 2, 3, 4, 5\} & \quad \text{Entry} \\
8 \cdot 7 \cdot 6 & \quad \text{Answer}
\end{align*}
\]

Classic

\[
\begin{align*}
\{1, 2, 3, 4, 5\} & \quad \text{Entry} \\
8 \cdot 7 \cdot 6 & \quad \text{Answer}
\end{align*}
\]

Using Shortcut Menus

Shortcut menus allow quick access to the following:

- **[ALPHA] [F1]** Opens FRAC menu.
- **[ALPHA] [F2]** Opens FUNC menu.
- **[ALPHA] [F3]** Opens MTRX menu.
- **[ALPHA] [F4]** Opens YVAR menu.
• Templates to enter fractions and selected functions from the MATH MATH and MATH NUM menus as you would see them in a textbook. Functions include absolute value, summation, numeric differentiation, numeric integration, and log base n.
• Matrix entry.
• Names of function variables from the VARS Y-VARS menu.

Initially, the menus are hidden. To open a menu, press [ALPHA] plus the F-key that corresponds to the menu, that is, [F1] for FRAC, [F2] for FUNC, [F3] for MTRX, or [F4] for YVAR. To select a menu item, either press the number corresponding to the item, or use the arrow keys to move the cursor to the appropriate line and then press [ENTER].

All shortcut menu items except matrix templates can also be selected using standard menus. For example, you can choose the summation template from three places:

FUNC shortcut menu

MATH MATH menu

Catalog

The shortcut menus are available to use where input is allowed. If the calculator is in Classic mode, or if a screen is displayed that does not support MathPrint™ display, entries will be displayed in Classic display. The MTRX menu is only available in MathPrint™ mode on the home screen and in the Y= editor.

Note: Shortcut menus may not be available if [ALPHA] plus F-key combinations are used by an application that is running, such as Inequality Graphing or Transformation Graphing.

Returning to the Home Screen

To return to the home screen from any other screen, press [2nd] [QUIT].
Busy Indicator

When the TI-84 Plus is calculating or graphing, a vertical moving line is displayed as a busy indicator in the top-right corner of the screen. When you pause a graph or a program, the busy indicator becomes a vertical moving dotted line.

Display Cursors

In most cases, the appearance of the cursor indicates what will happen when you press the next key or select the next menu item to be pasted as a character.

<table>
<thead>
<tr>
<th>Cursor</th>
<th>Appearance</th>
<th>Effect of Next Keystroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry</td>
<td>Solid rectangle</td>
<td>A character is entered at the cursor; any existing character is overwritten</td>
</tr>
<tr>
<td>Insert</td>
<td>Underline</td>
<td>A character is inserted in front of the cursor location</td>
</tr>
<tr>
<td>Second</td>
<td>Reverse arrow</td>
<td>A 2nd character is entered or a 2nd operation is executed</td>
</tr>
<tr>
<td>Alpha</td>
<td>Reverse A</td>
<td>An alpha character is entered, SOLVE is executed, or shortcut menus are displayed.</td>
</tr>
<tr>
<td>Full</td>
<td>Checkerboard rectangle</td>
<td>No entry; the maximum characters are entered at a prompt or memory is full</td>
</tr>
<tr>
<td>MathPrint™</td>
<td>Right arrow</td>
<td>The cursor moves to either the next part of the template or out of the template.</td>
</tr>
</tbody>
</table>

If you press \[\text{ALPHA}\] during an insertion, the cursor becomes an underlined \(A\). If you press \[\text{2nd}\] during an insertion, the underlined cursors becomes an underlined \(\uparrow\).

Note: If you highlight a small character such as a colon or a comma and then press \[\text{ALPHA}\] or \[\text{2nd}\], the cursor does not change because the cursor width is too narrow.

Graphs and editors sometimes display additional cursors, which are described in other chapters.

Interchangeable Faceplates

The TI-84 Plus Silver Edition has interchangeable faceplates that let you customize the appearance of your unit. To purchase additional faceplates, refer to the TI Online Store at education.ti.com.
Removing a Faceplate

1. Lift the tab at the bottom edge of the faceplate away from the TI-84 Plus Silver Edition case.
2. Carefully lift the faceplate away from the unit until it releases. Be careful not to damage the faceplate or the keyboard.

Installing New Faceplates

1. Align the top of the faceplate in the corresponding grooves of the TI-84 Plus Silver Edition case.
2. Gently click the faceplate into place. Do not force.
3. Make sure you gently press each of the grooves to ensure the faceplate is installed properly. See the diagram for proper groove placement.

Using the Clock

Use the clock to set the time and date, select the clock display format, and turn the clock on and off. The clock is turned on by default and is accessed from the mode screen.

Displaying the Clock Settings

1. Press \texttt{MODE}.
2. Press the \texttt{2nd 4} to move the cursor to \texttt{SET CLOCK}.
3. Press \texttt{ENTER}.
Changing the Clock Settings

1. Press the \(\blacktriangleright \) or \(\blacktriangleleft \) to highlight the date format you want. Press [ENTER].

2. Press \(\blacktriangleright \) to highlight YEAR. Press [CLEAR] and type the year.

3. Press \(\blacktriangleright \) to highlight MONTH. Press [CLEAR] and type the number of the month (1-12).

4. Press \(\blacktriangleright \) to highlight DAY. Press [CLEAR] and type the date.

5. Press \(\blacktriangleright \) to highlight TIME. Press \(\blacktriangleright \) or \(\blacktriangleleft \) to highlight the time format you want. Press [ENTER].

6. Press \(\blacktriangleright \) to highlight HOUR. Press [CLEAR] and type the hour (a number from 1-12 or 0-23).

7. Press \(\blacktriangleright \) to highlight MINUTE. Press [CLEAR] and type the minutes (a number from 0-59).

8. Press \(\blacktriangleright \) to highlight AM/PM. Press \(\blacktriangleright \) or \(\blacktriangleleft \) to highlight the format. Press [ENTER].

9. To save changes, press \(\blacktriangleright \) to highlight SAVE. Press [ENTER].

Error Messages

If you type the wrong date for the month, for example, June 31 (June does not have 31 days), you will receive an error message with two choices:

- To quit the clock application and return to the home screen, select 1: Quit.

 — or —

- To return to the clock application and correct the error, select 2: Goto.

Turning the Clock On

There are two options to turn the clock on. One option is through the MODE screen, the other is through the Catalog.
Using the Mode Screen to turn the clock on

1. If the clock is turned off, Press \(\uparrow \) to highlight TURN CLOCK ON.
2. Press ENTER ENTER.

Using the Catalog to turn the clock on

1. If the clock is turned off, Press \(2\text{nd} \) [CATALOG].
2. Press \(\uparrow \) or \(\downarrow \) to scroll the CATALOG until the selection cursor points to ClockOn.
3. Press ENTER ENTER.

Turning the Clock Off

1. Press \(2\text{nd} \) [CATALOG].
2. Press \(\uparrow \) or \(\downarrow \) to scroll the CATALOG until the selection cursor points to ClockOff.
3. Press ENTER ENTER.

Entering Expressions and Instructions

What Is an Expression?

An expression is a group of numbers, variables, functions and their arguments, or a combination of these elements. An expression evaluates to a single answer. On the TI-84 Plus, you enter an expression in the same order as you would write it on paper. For example, \(\pi R^2 \) is an expression.

You can use an expression on the home screen to calculate an answer. In most places where a value is required, you can use an expression to enter a value.

\[
\left(\frac{1}{3} \right)^2 \cdot 1111111111
\]

\[
\frac{1^2}{3^3} = \frac{1}{9}
\]
Entering an Expression

To create an expression, you enter numbers, variables, and functions using the keyboard and menus. An expression is completed when you press [ENTER], regardless of the cursor location. The entire expression is evaluated according to Equation Operating System (EOS™) rules, and the answer is displayed according to the mode setting for Answer.

Most TI-84 Plus functions and operations are symbols comprising several characters. You must enter the symbol from the keyboard or a menu; do not spell it out. For example, to calculate the log of 45, you must press [LOG] 45. Do not enter the letters L, O, and G. If you enter LOG, the TI-84 Plus interprets the entry as implied multiplication of the variables L, O, and G.

Calculate $3.76 \div (-7.9 + \sqrt{5}) + 2 \log 45$.

Multiple Entries on a Line

To enter two or more expressions or instructions on a line, separate them with colons (A). All instructions are stored together in last entry (ENTRY).

Entering a Number in Scientific Notation

1. Enter the part of the number that precedes the exponent. This value can be an expression.
2. Press [2nd] [EE]. E is pasted to the cursor location.
3. Enter the exponent, which can be one or two digits.

 Note: If the exponent is negative, press $[^{-}]$, and then enter the exponent.

When you enter a number in scientific notation, the TI-84 Plus does not automatically display answers in scientific or engineering notation. The mode settings and the size of the number determine the display format.

Functions

A function returns a value. For example, $+, -, \cdot, \sqrt{,}$, and $\text{log}(\text{are the functions in the example on the previous page. In general, the first letter of each function is lowercase on the TI-84 Plus. Most functions take at least one argument, as indicated by an open parenthesis following the name. For example, $\sin(\text{requires one argument, } \sin(\text{value}).}$

3.76 / (-7.9 + √5) + 2 log 45
Note: The Catalog Help App contains syntax information for most of the functions in the catalog.

Instructions

An instruction initiates an action. For example, **ClrDraw** is an instruction that clears any drawn elements from a graph. Instructions cannot be used in expressions. In general, the first letter of each instruction name is uppercase. Some instructions take more than one argument, as indicated by an open parenthesis at the end of the name. For example, **Circle** requires three arguments, **Circle**(X, Y, radius).

Interrupting a Calculation

To interrupt a calculation or graph in progress, which is indicated by the busy indicator, press **ON**.

When you interrupt a calculation, a menu is displayed.

- To return to the home screen, select **1:Quit**.
- To go to the location of the interruption, select **2:Goto**.

When you interrupt a graph, a partial graph is displayed.

- To return to the home screen, press **CLEAR** or any non-graphing key.
- To restart graphing, press a graphing key or select a graphing instruction.

TI-84 Plus Edit Keys

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ or ~</td>
<td>Moves the cursor within an expression; these keys repeat.</td>
</tr>
<tr>
<td>or †</td>
<td>Moves the cursor from line to line within an expression that occupies more than one line; these keys repeat. Moves the cursor from term to term within an expression in MathPrint™ mode; these keys repeat. On the home screen, scrolls through the history of entries and answers.</td>
</tr>
<tr>
<td>2nd ↓</td>
<td>Moves the cursor to the beginning of an expression.</td>
</tr>
<tr>
<td>2nd ↑</td>
<td>Moves the cursor to the end of an expression.</td>
</tr>
<tr>
<td>2nd †</td>
<td>On the home screen, moves the cursor out of a MathPrint™ expression. In the Y=editor, moves the cursor from a MathPrint™ expression to the previous Y-var.</td>
</tr>
<tr>
<td>2nd ~</td>
<td>In the Y=editor, moves the cursor from a MathPrint™ expression to the next Y-var.</td>
</tr>
<tr>
<td>ENTER</td>
<td>Evaluates an expression or executes an instruction.</td>
</tr>
<tr>
<td>CLEAR</td>
<td>On a line with text on the home screen, clears the current line. On a blank line on the home screen, clears everything on the home screen. In an editor, clears the expression or value where the cursor is located; it does not store a zero.</td>
</tr>
</tbody>
</table>
Setting Modes

Checking Mode Settings

Mode settings control how the TI-84 Plus displays and interprets numbers and graphs. Mode settings are retained by the Constant ‘Memory™ feature when the TI-84 Plus is turned off. All numbers, including elements of matrices and lists, are displayed according to the current mode settings.

To display the mode settings, press [MODE]. The current settings are highlighted. Defaults are highlighted below. The following pages describe the mode settings in detail.

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>Deletes a character at the cursor; this key repeats.</td>
</tr>
<tr>
<td>2nd [INS]</td>
<td>Changes the cursor to an underline (___); inserts characters in front of the underline cursor; to end insertion, press 2nd [INS] or press ↓, →, ↑, or ←.</td>
</tr>
<tr>
<td>2nd</td>
<td>Changes the cursor to 1; the next keystroke performs a 2nd function (displayed above a key and to the left); to cancel 2nd, press 2nd again.</td>
</tr>
<tr>
<td>ALPHA</td>
<td>Changes the cursor to Ì; the next keystroke performs a third function of that key (displayed above a key and to the right), executes SOLVE (Chapters 10 and 11), or accesses a shortcut menu; to cancel ALPHA, press ALPHA or press ↓, →, ↑, or ←.</td>
</tr>
<tr>
<td>2nd [A-LOCK]</td>
<td>Changes the cursor to Ì; sets alpha-lock; subsequent keystrokes access the third functions of the keys pressed; to cancel alpha-lock, press ALPHA. If you are prompted to enter a name such as for a group or a program, alpha-lock is set automatically.</td>
</tr>
<tr>
<td>X,T,Θ,n</td>
<td>Pastes an X in Func mode, a T in Par mode, a Θ in Pol mode, or an n in Seq mode with one keystroke.</td>
</tr>
</tbody>
</table>

Setting Modes

Checking Mode Settings

Mode settings control how the TI-84 Plus displays and interprets numbers and graphs. Mode settings are retained by the Constant ‘Memory™ feature when the TI-84 Plus is turned off. All numbers, including elements of matrices and lists, are displayed according to the current mode settings.

To display the mode settings, press [MODE]. The current settings are highlighted. Defaults are highlighted below. The following pages describe the mode settings in detail.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric notation</td>
<td>Normal, Sci, Eng</td>
<td>Numeric notation</td>
</tr>
<tr>
<td>Number of decimal places in answers</td>
<td>Float 0123456789</td>
<td>Number of decimal places in answers</td>
</tr>
<tr>
<td>Unit of angle measure</td>
<td>Radian Degree</td>
<td>Unit of angle measure</td>
</tr>
<tr>
<td>Type of graphing</td>
<td>Func Par Pol Seq</td>
<td>Type of graphing</td>
</tr>
<tr>
<td>Whether to connect graph points</td>
<td>Connected Dot</td>
<td>Whether to connect graph points</td>
</tr>
<tr>
<td>Whether to plot simultaneously</td>
<td>Sequential Simul</td>
<td>Whether to plot simultaneously</td>
</tr>
<tr>
<td>Real, rectangular complex, or polar complex</td>
<td>Real a+bi re^θi</td>
<td>Real, rectangular complex, or polar complex</td>
</tr>
<tr>
<td>Full screen, two split-screen modes</td>
<td>Full Horiz G-T</td>
<td>Full screen, two split-screen modes</td>
</tr>
<tr>
<td>Controls whether inputs and outputs on the home screen and in the Y= editor are displayed as they are in textbooks</td>
<td>MathPrint Classic</td>
<td>Controls whether inputs and outputs on the home screen and in the Y= editor are displayed as they are in textbooks</td>
</tr>
<tr>
<td>Displays results as simple fractions or mixed fractions</td>
<td>n/d Un/d</td>
<td>Displays results as simple fractions or mixed fractions</td>
</tr>
<tr>
<td>Controls the format of the answers</td>
<td>Answers: Auto Dec Frac</td>
<td>Controls the format of the answers</td>
</tr>
</tbody>
</table>
Changing Mode Settings

To change mode settings, follow these steps.

1. Press † or ‡ to move the cursor to the line of the setting that you want to change.
2. Press ~ or | to move the cursor to the setting you want.
3. Press Í.

Setting a Mode from a Program

You can set a mode from a program by entering the name of the mode as an instruction; for example, Func or Float. From a blank program command line, select the mode setting from the mode screen; the instruction is pasted to the cursor location.

Normal, Sci, Eng

Notation modes only affect the way an answer is displayed on the home screen. Numeric answers can be displayed with up to 10 digits and a two-digit exponent and as fractions. You can enter a number in any format.

Normal notation mode is the usual way we express numbers, with digits to the left and right of the decimal, as in 12345.67.
Sci (scientific) notation mode expresses numbers in two parts. The significant digits display with one digit to the left of the decimal. The appropriate power of 10 displays to the right of \times, as in 1.234567×10^4.

Eng (engineering) notation mode is similar to scientific notation. However, the number can have one, two, or three digits before the decimal; and the power-of-10 exponent is a multiple of three, as in 12.34567×10^3.

Note: If you select Normal notation, but the answer cannot display in 10 digits (or the absolute value is less than .001), the TI-84 Plus expresses the answer in scientific notation.

Float, 0123456789

Float (floating) decimal mode displays up to 10 digits, plus the sign and decimal.

0123456789 (fixed) decimal mode specifies the number of digits (0 through 9) to display to the right of the decimal for decimal answers.

The decimal setting applies to Normal, Sci, and Eng notation modes.

The decimal setting applies to these numbers, with respect to the Answer mode setting:

- An answer displayed on the home screen
- Coordinates on a graph (Chapters 3, 4, 5, and 6)
- The Tangent DRAW instruction equation of the line, x, and dy/dx values (Chapter 8)
- Results of CALCULATE operations (Chapters 3, 4, 5, and 6)
- The regression equation stored after the execution of a regression model (Chapter 12)

Radian, Degree

Angle modes control how the TI-84 Plus interprets angle values in trigonometric functions and polar/rectangular conversions.

Radian mode interprets angle values as radians. Answers display in radians.

Degree mode interprets angle values as degrees. Answers display in degrees.

Func, Par, Pol, Seq

Graphing modes define the graphing parameters. Chapters 3, 4, 5, and 6 describe these modes in detail.

Func (function) graphing mode plots functions, where Y is a function of X (Chapter 3).

Par (parametric) graphing mode plots relations, where X and Y are functions of T (Chapter 4).

Pol (polar) graphing mode plots functions, where r is a function of θ (Chapter 5).
Seq (sequence) graphing mode plots sequences (Chapter 6).

Connected, Dot

Connected plotting mode draws a line connecting each point calculated for the selected functions.

Dot plotting mode plots only the calculated points of the selected functions.

Sequential, Simul

Sequential graphing-order mode evaluates and plots one function completely before the next function is evaluated and plotted.

Simul (simultaneous) graphing-order mode evaluates and plots all selected functions for a single value of X and then evaluates and plots them for the next value of X.

Note: Regardless of which graphing mode is selected, the TI-84 Plus will sequentially graph all stat plots before it graphs any functions.

Real, a+b\text{i}, re^\text{\theta}\text{i}

Real mode does not display complex results unless complex numbers are entered as input.

Two complex modes display complex results.

• a+b\text{i} (rectangular complex mode) displays complex numbers in the form a+b\text{i}.
• re^\text{\theta}\text{i} (polar complex mode) displays complex numbers in the form re^\text{\theta}\text{i}.

Note: When you use the n/d template, both n and d must be real numbers. For example, you can enter \(\frac{1}{2} - \frac{1}{4}\) (the answer is displayed as a decimal value) but if you enter \(\frac{1-i}{i}\), a data type error displays. To perform division with a complex number in the numerator or denominator, use regular division instead of the n/d template.

\[
\begin{array}{c}
\frac{1+i}{2} \\
\frac{(1-i)}{i}
\end{array}
\]

Full, Horiz, G-T

Full screen mode uses the entire screen to display a graph or edit screen.

Each split-screen mode displays two screens simultaneously.
• **Horiz** (horizontal) mode displays the current graph on the top half of the screen; it displays the home screen or an editor on the bottom half (Chapter 9).

• **G-T** (graph-table) mode displays the current graph on the left half of the screen; it displays the table screen on the right half (Chapter 9).

MathPrint™, Classic

MathPrint™ mode displays most inputs and outputs the way they are shown in textbooks, such as

\[\frac{1}{2} + \frac{3}{4} \text{ and } \int x^2 \, dx. \]

Classic mode displays expressions and answers as if written on one line, such as \(\frac{1}{2} + \frac{3}{4} \).

Note: If you switch between these modes, most entries will be preserved; however matrix calculations will not be preserved.

n/d, Un/d

n/d displays results as a simple fraction. Fractions may contain a maximum of six digits in the numerator; the value of the denominator may not exceed 9999.

Un/d displays results as a mixed number, if applicable. U, n, and d must be all be integers. If U is a non-integer, the result may be converted \(U \rightarrow n/d \). If n or d is a non-integer, a syntax error is displayed. The whole number, numerator, and denominator may each contain a maximum of three digits.

Answers: Auto, Dec, Frac

Auto displays answers in a similar format as the input. For example, if a fraction is entered in an expression, the answer will be in fraction form, if possible. If a decimal appears in the expression, the output will be a decimal number.

Dec displays answers as integers or decimal numbers.

Frac displays answers as fractions, if possible.

Note: The Answers mode setting also affects how values in sequences, lists, and tables are displayed. Choose Dec or Frac to ensure that values are displayed in either decimal or fraction form. You can also convert values from decimal to fraction or fraction to decimal using the FRAC shortcut menu or the MATH menu.

GoTo Format Graph: No, Yes

No does not display the FORMAT graph screen, but can always be accessed by pressing 2nd [FORMAT].
Yes leaves the mode screen and displays the FORMAT graph screen when you press [ENTER] so that you can change the graph format settings. To return to the mode screen, press [MODE].

Stat Diagnostics: Off, On

Off displays a statistical regression calculation without the correlation coefficient (r) or the coefficient of determination (r^2).

On displays a statistical regression calculation with the correlation coefficient (r), and the coefficient of determination (r^2), as appropriate.

Stat Wizards: On, Off

On: Selection of menu items in STAT CALC, DISTR DISTR, DISTR DRAW and seq(in LIST OPS displays a screen which provides syntax help (wizard) for the entry of required and optional arguments into the command or function. The function or command will paste the entered arguments to the Home Screen history or to most other locations where the cursor is available for input. Some calculations will compute directly from the wizard. If a command or function is accessed from [CATALOG] the command or function will paste without wizard support. Run the Catalog Help application ([APPS]) for more syntax help when needed.

Off: The function or command will paste to the cursor location with no syntax help (wizard)

Set Clock

Use the clock to set the time, date, and clock display formats.

Using TI-84 Plus Variable Names

Variables and Defined Items

On the TI-84 Plus you can enter and use several types of data, including real and complex numbers, matrices, lists, functions, stat plots, graph databases, graph pictures, and strings.

The TI-84 Plus uses assigned names for variables and other items saved in memory. For lists, you also can create your own five-character names.

<table>
<thead>
<tr>
<th>Variable Type</th>
<th>Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real numbers (including fractions)</td>
<td>A, B, ... , Z, θ</td>
</tr>
<tr>
<td>Complex numbers</td>
<td>A, B, ... , Z, θ</td>
</tr>
<tr>
<td>Matrices</td>
<td>[A], [B], [C], ... , [J]</td>
</tr>
<tr>
<td>Lists</td>
<td>L1, L2, L3, L4, L5, L6, and user-defined names</td>
</tr>
<tr>
<td>Functions</td>
<td>Y1, Y2, ... , Y9, Y0</td>
</tr>
<tr>
<td>Parametric equations</td>
<td>X1T and Y1T, ... , X6T and Y6T</td>
</tr>
</tbody>
</table>
Notes about Variables

- You can create as many list names as memory will allow (Chapter 11).
- Programs have user-defined names and share memory with variables (Chapter 16).
- From the home screen or from a program, you can store to matrices (Chapter 10), lists (Chapter 11), strings (Chapter 15), system variables such as \(\text{Xmax} \) (Chapter 1), \(\text{TblStart} \) (Chapter 7), and all \(\text{Y=} \) functions (Chapters 3, 4, 5, and 6).
- From an editor, you can store to matrices, lists, and \(\text{Y=} \) functions (Chapter 3).
- From the home screen, a program, or an editor, you can store a value to a matrix element or a list element.
- You can use DRAW STO menu items to store and recall graph databases and pictures (Chapter 8).
- Although most variables can be archived, system variables including \(r, T, X, Y \), and \(\theta \) cannot be archived (Chapter 18).
- Apps are independent applications, which are stored in Flash ROM. AppVars is a variable holder used to store variables created by independent applications. You cannot edit or change variables in AppVars unless you do so through the application which created them.

Storing Variable Values

Storing Values in a Variable

Values are stored to and recalled from memory using variable names. When an expression containing the name of a variable is evaluated, the value of the variable at that time is used.

To store a value to a variable from the home screen or a program using the STO key, begin on a blank line and follow these steps.

1. Enter the value you want to store. The value can be an expression.
2. Press STO, \(\rightarrow \) is copied to the cursor location.
3. Press \texttt{ALPHA} and then the letter of the variable to which you want to store the value.
4. Press \texttt{ENTER}. If you entered an expression, it is evaluated. The value is stored to the variable.

\[
5 + 8^3 + 9 = 197
\]

\textbf{Displaying a Variable Value}

To display the value of a variable, enter the name on a blank line on the home screen, and then press \texttt{ENTER}.

\[
\begin{array}{c|c}
\text{Variable} & \text{Value} \\
\hline
L1 & 517 \\
\end{array}
\]

\textbf{Archiving Variables (Archive, Unarchive)}

You can archive data, programs, or other variables in a section of memory called user data archive where they cannot be edited or deleted inadvertently. Archived variables are indicated by asterisks (*) to the left of the variable names. Archived variables cannot be edited or executed. They can only be seen and unarchived. For example, if you archive list L1, you will see that L1 exists in memory but if you select it and paste the name L1 to the home screen, you won’t be able to see its contents or edit it until it is unarchived.

\textbf{Recalling Variable Values}

\textbf{Using Recall (RCL)}

To recall and copy variable contents to the current cursor location, follow these steps. To leave RCL, press \texttt{CLEAR}.

1. Press \texttt{2nd} \texttt{[RCL]}. \texttt{RCL} and the edit cursor are displayed on the bottom line of the screen.
2. Enter the name of the variable in one of five ways.
 - Press \texttt{ALPHA} and then the letter of the variable.
 - Press \texttt{2nd} \texttt{[LIST]}, and then select the name of the list, or press \texttt{2nd} \texttt{[Lx]}.
 - Press \texttt{2nd} \texttt{[MATRIX]}, and then select the name of the matrix.
 - Press \texttt{VARS} to display the \texttt{VARS} menu or \texttt{VARS} \texttt{1} to display the \texttt{VARS Y-VARS} menu; then select the type and then the name of the variable or function.
 - Press \texttt{ALPHA} \texttt{[F-4]} to display the \texttt{YVAR} shortcut menu, then select the name of the function.
 - Press \texttt{PRGM} \texttt{4}, and then select the name of the program (in the program editor only).

The variable name you selected is displayed on the bottom line and the cursor disappears.
3. Press \texttt{ENTER}. The variable contents are inserted where the cursor was located before you began these steps.

\begin{align*}
\text{100+} & \\
\text{Rc1 O} & \\
\end{align*}

\textbf{Note:} You can edit the characters pasted to the expression without affecting the value in memory.

\section*{Scrolling Through Previous Entries on the Home Screen}

You can scroll up through previous entries and answers on the home screen, even if you have cleared the screen. When you find an entry or answer that you want to use, you can select it and paste it on the current entry line.

\textbf{Note:} List and matrix answers cannot be copied and pasted to the new entry line. However, you can copy the list or matrix command to the new entry line and execute the command again to display the answer.

- Press \texttt{\leftarrow} or \texttt{\rightarrow} to move the cursor to the entry or answer you want to copy and then press \texttt{ENTER}. The entry or answer that you copied is automatically pasted on the current input line at the cursor location.

\textbf{Note:} If the cursor is in a MathPrint™ expression, press \texttt{2nd \leftarrow} to move the cursor out of the expression and then move the cursor to the entry or answer you want to copy.

- Press \texttt{CLEAR} or \texttt{DEL} to delete an entry/answer pair. After an entry/answer pair has been deleted, it cannot be displayed or recalled again.

\section*{ENTRY (Last Entry) Storage Area}

\subsection*{Using ENTRY (Last Entry)}

When you press \texttt{ENTER} on the home screen to evaluate an expression or execute an instruction, the expression or instruction is placed in a storage area called ENTRY (last entry). When you turn off the TI-84 Plus, ENTRY is retained in memory.

To recall ENTRY, press \texttt{2nd [ENTRY]}. The last entry is pasted to the current cursor location, where you can edit and execute it. On the home screen or in an editor, the current line is cleared and the last entry is pasted to the line.
Because the TI-84 Plus updates ENTRY only when you press [ENTER], you can recall the previous entry even if you have begun to enter the next expression.

```
5 + 7  
[ENTER]  
2ND [ENTRY]
```

Accessing a Previous Entry

The TI-84 Plus retains as many previous entries as possible in ENTRY, up to a capacity of 128 bytes. To scroll those entries, press 2ND [ENTRY] repeatedly. If a single entry is more than 128 bytes, it is retained for ENTRY, but it cannot be placed in the ENTRY storage area.

```
1 STO> ALPHA A  
[ENTER]  
2 STO> ALPHA B  
[ENTER]  
2ND [ENTRY]
```

If you press 2ND [ENTRY] after displaying the oldest stored entry, the newest stored entry is displayed again, then the next-newest entry, and so on.

```
2ND [ENTRY]  
1 >R  
2 >B  
1 >R
```

Executing the Previous Entry Again

After you have pasted the last entry to the home screen and edited it (if you chose to edit it), you can execute the entry. To execute the last entry, press [ENTER].

To execute the displayed entry again, press [ENTER] again. Each subsequent execution displays the entry and the new answer.

```
0 STO> ALPHA N  
[ENTER]  
ALPHA N + 1 STO> ALPHA N  
ALPHA [{]} ALPHA N N² [ENTER]  
[ENTER]
```

```
0 >N  
N + 1 >N: N²  
N + 1 >N: N²
```

Multiple Entry Values on a Line

To store to ENTRY two or more expressions or instructions, separate each expression or instruction with a colon, then press [ENTER]. All expressions and instructions separated by colons are stored in ENTRY.
When you press \[\text{2nd} \: \text{ENTRY}\], all the expressions and instructions separated by colons are pasted to the current cursor location. You can edit any of the entries, and then execute all of them when you press \[\text{Enter}\].

Example: For the equation \(A=\pi r^2\), use trial and error to find the radius of a circle that covers 200 square centimeters. Use 8 as your first guess.

\[
\begin{align*}
8 & \text{ [STO]} \: \text{ALPHA} \: R \: \text{ALPHA} \: [:] \\
2\text{nd} \: \pi & \text{ALPHA} \: R \: \pi^2 \: \text{ENTER} \\
2\text{nd} \: \text{ENTRY} & \\
2\text{nd} \: \times & 7 \: [\text{INS}] \: 95 \\
\text{ENTER} & \\
8 \times R \: \pi R^2 & 291.0619298 \\
8 \times R \: \pi R^2 & 198.5565097
\end{align*}
\]

Continue until the answer is as accurate as you want.

Clearing ENTRY

Clear Entries (Chapter 18) clears all data that the TI-84 Plus is holding in the ENTRY storage area.

Using Ans in an Expression

When an expression is evaluated successfully from the home screen or from a program, the TI-84 Plus stores the answer to a storage area called Ans (last answer). Ans may be a real or complex number, a list, a matrix, or a string. When you turn off the TI-84 Plus, the value in Ans is retained in memory.

You can use the variable Ans to represent the last answer in most places. Press \[\text{2nd} \: \text{[ANS]}\] to copy the variable name Ans to the cursor location. When the expression is evaluated, the TI-84 Plus uses the value of Ans in the calculation.

Calculate the area of a garden plot 1.7 meters by 4.2 meters. Then calculate the yield per square meter if the plot produces a total of 147 tomatoes.

\[
\begin{align*}
1 \: 7 \: \times & \: 4 \: \times 2 \\
\text{ENTER} & \\
147 & \: [\text{2nd} \: \text{[ANS]}] \\
\text{ENTER} & \\
1.7 \times 4.2 & 7.14 \\
147 \div \text{Ans} & 20.58823529
\end{align*}
\]
Continuing an Expression

You can use Ans as the first entry in the next expression without entering the value again or pressing \[2\text{nd} \text{Ans}\]. On a blank line on the home screen, enter the function. The TI-84 Plus pastes the variable name Ans to the screen, then the function.

\[
\begin{align*}
5 \div 2 \quad & \quad 5/2 \\
\text{ENTER} \quad & \quad 2.5 \\
\times 9 \quad & \quad \text{Ans} \times 9,9 \\
\text{ENTER} \quad & \quad 24.75
\end{align*}
\]

Storing Answers

To store an answer, store Ans to a variable before you evaluate another expression.

Calculate the area of a circle of radius 5 meters. Next, calculate the volume of a cylinder of radius 5 meters and height 3.3 meters, and then store the result in the variable V.

\[
\begin{align*}
\text{2nd} \left[\pi \right] \quad & \quad \pi \left(5\right)^2 \\
\text{ENTER} \quad & \quad 78.53981634 \\
\times 3 \quad & \quad \text{Ans} \times 3,3 \\
\text{ENTER} \quad & \quad 259.1813939 \\
\text{STO} \text{C} \quad & \quad \text{ANS} \times V \\
\text{ENTER} \quad & \quad 259.1813939
\end{align*}
\]

TI-84 Plus Menus

Using a TI-84 Plus Menu

You can access most TI-84 Plus operations using menus. When you press a key or key combination to display a menu, one or more menu names appear on the top line of the screen.

- The menu name on the left side of the top line is highlighted. Up to seven items in that menu are displayed, beginning with item 1, which also is highlighted.
- A number or letter identifies each menu item’s place in the menu. The order is 1 through 9, then 0, then A, B, C, and so on. The LIST NAMES, PRGM EXEC, and PRGM EDIT menus only label items 1 through 9 and 0.
- When the menu continues beyond the displayed items, a down arrow (↓) replaces the colon next to the last displayed item.
- When a menu item ends in an ellipsis (...), the item displays a secondary menu or editor when you select it.
- When an asterisk (⋆) appears to the left of a menu item, that item is stored in user data archive (Chapter 18).
Displaying a Menu

While using your TI-84 Plus, you often will need to access items from its menus.

When you press a key that displays a menu, that menu temporarily replaces the screen where you are working. For example, when you press [MATH], the MATH menu is displayed as a full screen.

After you select an item from a menu, the screen where you are working usually is displayed again.

Moving from One Menu to Another

Some keys access more than one menu. When you press such a key, the names of all accessible menus are displayed on the top line. When you highlight a menu name, the items in that menu are displayed. Press [and] to highlight each menu name.

Note: FRAC shortcut menu items are also found on the MATH NUM menu. FUNC shortcut menu items are also found on the MATH MATH menu.

Scrolling a Menu

To scroll down the menu items, press [↓]. To scroll up the menu items, press [↑].

To page down six menu items at a time, press [ALPHA] [↓]. To page up six menu items at a time, press [ALPHA] [↑].

To go to the last menu item directly from the first menu item, press [↓]. To go to the first menu item directly from the last menu item, press [↑].
Selecting an Item from a Menu

You can select an item from a menu in either of two ways.

- Press the number or letter of the item you want to select. The cursor can be anywhere on the menu, and the item you select need not be displayed on the screen.

- Press ▲ or ▼ to move the cursor to the item you want, and then press [ENTER].

After you select an item from a menu, the TI-84 Plus typically displays the previous screen.

Note: On the LIST NAMES, PRGM EXEC, and PRGM EDIT menus, only items 1 through 9 and 0 are labeled in such a way that you can select them by pressing the appropriate number key. To move the cursor to the first item beginning with any alpha character or θ, press the key combination for that alpha character or θ. If no items begin with that character, the cursor moves beyond it to the next item.

Example: Calculate $\sqrt[3]{27}$.

Leaving a Menu without Making a Selection

You can leave a menu without making a selection in any of four ways.

- Press [2nd] [QUIT] to return to the home screen.
- Press [CLEAR] to return to the previous screen.
- Press a key or key combination for a different menu, such as [MATH] or [2nd] [LIST].
- Press a key or key combination for a different screen, such as [Y=] or [2nd] [TABLE].

VARS and VARS Y-VARS Menus

VARS Menu

You can enter the names of functions and system variables in an expression or store to them directly.
To display the VARS menu, press \[\text{VARS}\]. All VARS menu items display secondary menus, which show the names of the system variables. 1:Window, 2:Zoom, and 5:Statistics each access more than one secondary menu.

<table>
<thead>
<tr>
<th>VARS Y-VARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Window...</td>
</tr>
<tr>
<td>2: Zoom...</td>
</tr>
<tr>
<td>3: GDB...</td>
</tr>
<tr>
<td>4: Picture...</td>
</tr>
<tr>
<td>5: Statistics...</td>
</tr>
<tr>
<td>6: Table...</td>
</tr>
<tr>
<td>7: String...</td>
</tr>
</tbody>
</table>

Selecting a Variable from the VARS Menu or VARS Y-VARS Menu

To display the VARS Y-VARS menu, press \[\text{[VARS]}\ \text{1}\]. 1:Function, 2:Parametric, and 3:Polar display secondary menus of the Y= function variables.

<table>
<thead>
<tr>
<th>VARS Y-VARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Function...</td>
</tr>
<tr>
<td>2: Parametric...</td>
</tr>
<tr>
<td>3: Polar...</td>
</tr>
<tr>
<td>4: On/Off...</td>
</tr>
</tbody>
</table>

Note:

- The sequence variables (\(u, v, w\)) are located on the keyboard as the second functions of 7, 8, and 9.
- These Y= function variables are also on the YVAR shortcut menu.

To select a variable from the VARS or VARS Y-VARS menu, follow these steps.

1. Display the VARS or VARS Y-VARS menu.
 - Press \[\text{VARS}\] to display the VARS menu.
 - Press \[\text{VARS}\ \text{1}\] to display the VARS Y-VARS menu.
2. Select the type of variable, such as 2:Zoom from the VARS menu or 3:Polar from the VARS Y-VARS menu. A secondary menu is displayed.
3. If you selected 1:Window, 2:Zoom, or 5:Statistics from the VARS menu, you can press \[\text{[}\] or \[\text{ }\] to display other secondary menus.
4. Select a variable name from the menu. It is pasted to the cursor location.
Equation Operating System (EOS™)

Order of Evaluation

The Equation Operating System (EOS™) defines the order in which functions in expressions are entered and evaluated on the TI-84 Plus. EOS™ lets you enter numbers and functions in a simple, straightforward sequence.

EOS™ evaluates the functions in an expression in this order.

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Functions that precede the argument, such as √, sin, or log(</td>
</tr>
<tr>
<td>2</td>
<td>Functions that are entered after the argument, such as 2⁴, -¹, !, °, f, and conversions</td>
</tr>
<tr>
<td>3</td>
<td>Powers and roots, such as 2⁴ or 5⁷√3²</td>
</tr>
<tr>
<td>4</td>
<td>Permutations (nPr) and combinations (nCr)</td>
</tr>
<tr>
<td>5</td>
<td>Multiplication, implied multiplication, and division</td>
</tr>
<tr>
<td>6</td>
<td>Addition and subtraction</td>
</tr>
<tr>
<td>7</td>
<td>Relational functions, such as > or ≤</td>
</tr>
<tr>
<td>8</td>
<td>Logic operator and</td>
</tr>
<tr>
<td>9</td>
<td>Logic operators or and xor</td>
</tr>
</tbody>
</table>

Note: Within a priority level, EOS™ evaluates functions from left to right. Calculations within parentheses are evaluated first.

Implied Multiplication

The TI-84 Plus recognizes implied multiplication, so you need not press [×] to express multiplication in all cases. For example, the TI-84 Plus interprets 2π, 4sin(46), 5(1+2), and (2×5)7 as implied multiplication.

Note: TI-84 Plus implied multiplication rules, although like the TI-83, differ from those of the TI-82. For example, the TI-84 Plus evaluates 1/2X as (1/2)×X, while the TI-82 evaluates 1/2X as 1/(2×X) (Chapter 2).

Parentheses

All calculations inside a pair of parentheses are completed first. For example, in the expression 4(1+2), EOS first evaluates the portion inside the parentheses, 1+2, and then multiplies the answer, 3, by 4.

\[
\begin{array}{c|c|c}
\text{Expression} & \text{Evaluation} \\
\hline
4 \times (1+2) & 4 \times 3 = 12 \\
4(1+2) & 12 \\
\end{array}
\]
Negation

To enter a negative number, use the negation key. Press \(\boxed{-} \) and then enter the number. On the TI-84 Plus, negation is in the third level in the EOS\(^\text{TM}\) hierarchy. Functions in the first level, such as squaring, are evaluated before negation.

Example: \(-x^2\), evaluates to a negative number (or 0). Use parentheses to square a negative number.

\[
\begin{array}{c|c}
-2^2 & 4 \\
\hline
(-2)^2 & 4 \\
\end{array}
\]

Note: Use the \(\boxed{-} \) key for subtraction and the \(\boxed{\sqrt{-1}} \) key for negation. If you press \(\boxed{-} \) to enter a negative number, as in 9 \(\boxed{-} \) 7, or if you press \(\boxed{\sqrt{-1}} \) to indicate subtraction, as in 9 \(\boxed{\sqrt{-1}} \) 7, an error occurs. If you press \(\boxed{\text{ALPHA}} \) A \(\boxed{-} \) \(\boxed{\text{ALPHA}} \) B, it is interpreted as implied multiplication \((A\times B)\).

Special Features of the TI-84 Plus

Flash – Electronic Upgradability

The TI-84 Plus uses Flash technology, which lets you upgrade to future software versions without buying a new graphing calculator.

As new functionality becomes available, you can electronically upgrade your TI-84 Plus from the Internet. Future software versions include maintenance upgrades that will be released free of charge, as well as new applications and major software upgrades that will be available for purchase from the TI Web site: education.ti.com. For details, refer to Chapter 19.

1.5 Megabytes of Available Memory

1.5 MB of available memory are built into the TI-84 Plus Silver Edition, and 0.5 MB for the TI-84 Plus. About 24 kilobytes (K) of RAM (random access memory) are available for you to compute and store functions, programs, and data.

About 1.5 M of user data archive allow you to store data, programs, applications, or any other variables to a safe location where they cannot be edited or deleted inadvertently. You can also free up RAM by archiving variables to user data. For details, refer to Chapter 18.

Applications

Many applications are preloaded on your TI-84 Plus and others can be installed to customize the TI-84 Plus to your needs. The 1.5 MB archive space lets you store up to 94 applications at one time on the TI-84 Plus Silver Edition. Applications can also be stored on a computer for later use or linked unit-to-unit. There are 30 App slots for the TI-84 Plus. For details, refer to Chapter 18.
Archiving

You can store variables in the TI-84 Plus user data archive, a protected area of memory separate from RAM. The user data archive lets you:

- Store data, programs, applications or any other variables to a safe location where they cannot be edited or deleted inadvertently.
- Create additional free RAM by archiving variables.

By archiving variables that do not need to be edited frequently, you can free up RAM for applications that may require additional memory. For details, refer to: Chapter 18.

Other TI-84 Plus Features

The TI-84 Plus guidebook that is included with your graphing calculator has introduced you to basic TI-84 Plus operations. This guidebook covers the other features and capabilities of the TI-84 Plus in greater detail.

Graphing

You can store, graph, and analyze up to 10 functions, up to six parametric functions, up to six polar functions, and up to three sequences. You can use DRAW instructions to annotate graphs.

The graphing chapters appear in this order: Function, Parametric, Polar, Sequence, and DRAW. For graphing details, refer to Chapters 3, 4, 5, 6, 8.

Sequences

You can generate sequences and graph them over time. Or, you can graph them as web plots or as phase plots. For details, refer to Chapter 6.

Tables

You can create function evaluation tables to analyze many functions simultaneously. For details, refer to Chapter 7.

Split Screen

You can split the screen horizontally to display both a graph and a related editor (such as the Y= editor), the table, the stat list editor, or the home screen. Also, you can split the screen vertically to display a graph and its table simultaneously. For details, refer to Chapter 9.

Matrices

You can enter and save up to 10 matrices and perform standard matrix operations on them. For details, refer to Chapter 10.
Lists

You can enter and save as many lists as memory allows for use in statistical analyses. You can attach formulas to lists for automatic computation. You can use lists to evaluate expressions at multiple values simultaneously and to graph a family of curves. For details, refer to: Chapter 11.

Statistics

You can perform one- and two-variable, list-based statistical analyses, including logistic and sine regression analysis. You can plot the data as a histogram, xyLine, scatter plot, modified or regular box-and-whisker plot, or normal probability plot. You can define and store up to three stat plot definitions. For details, refer to Chapter 12.

Inferential Statistics

You can perform 16 hypothesis tests and confidence intervals and 15 distribution functions. You can display hypothesis test results graphically or numerically. For details, refer to Chapter 13.

Applications

Press [APPS] to see the complete list of applications that came with your graphing calculator.

Visit education.ti.com/guides for additional Flash application guidebooks. For details, refer to Chapter 14.

CATALOG

The CATALOG is a convenient, alphabetical list of all functions and instructions on the TI-84 Plus. You can paste any function or instruction from the CATALOG to the current cursor location. For details, refer to Chapter 15.

Programming

You can enter and store programs that include extensive control and input/output instructions. For details, refer to Chapter 16.
Archiving

Archiving allows you to store data, programs, or other variables to user data archive where they cannot be edited or deleted inadvertently. Archiving also allows you to free up RAM for variables that may require additional memory.

Archived variables are indicated by asterisks (*) to the left of the variable names.

For details, refer to Chapter 16.

Communication Link

The TI-84 Plus has a USB port using a USB unit-to-unit cable to connect and communicate with another TI-84 Plus or TI-84 Plus Silver Edition. The TI-84 Plus also has an I/O port using an I/O unit-to-unit cable to communicate with a TI-84 Plus Silver Edition, a TI-84 Plus, a TI-83 Plus Silver Edition, a TI-83 Plus, a TI-83, a TI-82, a TI-73, CBL 2™, or a CBR™ System.

With TI Connect™ software and a USB computer cable, you can also link the TI-84 Plus to a personal computer.

As future software upgrades become available on the TI Web site, you can download the software to your PC and then use the TI Connect™ software and a USB computer cable to upgrade your TI-84 Plus.

For details, refer to: Chapter 19

Error Conditions

Diagnosing an Error

The TI-84 Plus detects errors while performing these tasks.

- Evaluating an expression
- Executing an instruction
- Plotting a graph
- Storing a value

When the TI-84 Plus detects an error, it returns an error message as a menu title, such as ERR:SYNTAX or ERR:DOMAIN. Appendix B describes each error type and possible reasons for the error.
• If you select 1:Quit (or press [2nd][QUIT] or [CLEAR]), then the home screen is displayed.
• If you select 2:Goto, then the previous screen is displayed with the cursor at or near the error location.

Note: If a syntax error occurs in the contents of a Y= function during program execution, then the Goto option returns to the Y= editor, not to the program.

Correcting an Error

To correct an error, follow these steps.

1. **Note the error type (ERR:error type).**
2. **Select 2:Goto**, if it is available. The previous screen is displayed with the cursor at or near the error location.
3. **Determine the error**. If you cannot recognize the error, refer to Appendix B.
4. **Correct the expression**.
Chapter 2: Math, Angle, and Test Operations

Getting Started: Coin Flip

Getting Started is a fast-paced introduction. Read the chapter for details. For more probability simulations, try the Probability Simulations App for the TI-84 Plus. You can download this App from education.ti.com.

Suppose you want to model flipping a fair coin 10 times. You want to track how many of those 10 coin flips result in heads. You want to perform this simulation 40 times. With a fair coin, the probability of a coin flip resulting in heads is 0.5 and the probability of a coin flip resulting in tails is 0.5.

1. Begin on the home screen. Press \(\boxed{\text{MATH}} \) \(\boxed{\text{X}} \) to display the \(\text{MATH PRB} \) menu. Press 7 to select 7:randBin((random Binomial). \(\text{randBin} \) is pasted to the home screen. Press 10 to enter the number of coin flips. Press \(\boxed{\text{¥}} \) 5 to enter the probability of heads. Press \(\boxed{\text{¢}} \). Press 40 to enter the number of simulations. Press \(\boxed{\text{©}} \).

2. Press \(\boxed{\text{Í}} \) to evaluate the expression. A list of 40 elements is generated with the first 7 displayed. The list contains the count of heads resulting from each set of 10 coin flips. The list has 40 elements because this simulation was performed 40 times. In this example, the coin came up heads five times in the first set of 10 coin flips, five times in the second set of 10 coin flips, and so on.

3. Press \(\boxed{\text{)} or \boxed{\text{)}} \) to view the additional counts in the list. An arrow (MathPrint™ mode) or an ellipses (Classic mode) indicate that the list continues beyond the screen.

4. Press \(\boxed{\text{STOP}} \) \(\boxed{\text{2nd} \ L1 \ \boxed{\text{ENTER}} \) to store the data to the list name \(\text{L1} \). You then can use the data for another activity, such as plotting a histogram (Chapter 12).

Note: Since \(\text{randBin} \) generates random numbers, your list elements may differ from those in the example.
Keyboard Math Operations

Using Lists with Math Operations

Math operations that are valid for lists return a list calculated element by element. If you use two lists in the same expression, they must be the same length.

\[\{1, 2\} + \{3, 4\} + 5 = \{9, 11\} \]

Addition, Subtraction, Multiplication, Division

You can use + (addition,
\[\text{+} \]), - (subtraction, \n\[\text{−} \]), * (multiplication, \n\[\text{×} \]), and / (division, \n\[\text{÷} \]) with real and complex numbers, expressions, lists, and matrices. You cannot use / with matrices. If you need to input A/2, enter this as A \n\[\text{÷} \] 2 or A \n\[\text{÷} \] 0.5.

\[
\begin{align*}
\text{valueA} + \text{valueB} & \quad \text{valueA} - \text{valueB} \\
\text{valueA} \times \text{valueB} & \quad \text{valueA} / \text{valueB}
\end{align*}
\]

Trigonometric Functions

You can use the trigonometric (trig) functions (sine, \n\[\text{sin} \], cosine, \n\[\text{cos} \], and tangent, \n\[\text{tan} \]) with real numbers, expressions, and lists. The current angle mode setting affects interpretation. For example, \n\[\text{sin}(30) \] in radian mode returns 0.9880316241; in degree mode it returns 0.5.

\[
\begin{align*}
\text{sin}(\text{value}) & \quad \text{cos}(\text{value}) \\
\text{tan}(\text{value})
\end{align*}
\]

You can use the inverse trig functions (arcsine, \n\[\text{2nd} \ \text{sin}^{-1} \]; arccosine, \n\[\text{2nd} \ \text{cos}^{-1} \]; and arctangent, \n\[\text{2nd} \ \text{tan}^{-1} \]) with real numbers, expressions, and lists. The current angle mode setting affects interpretation.

\[
\begin{align*}
\text{sin}^{-1}(\text{value}) & \quad \text{cos}^{-1}(\text{value}) \\
\text{tan}^{-1}(\text{value})
\end{align*}
\]

Note: The trig functions do not operate on complex numbers.

Power, Square, Square Root

You can use ^ (power, \n\[\text{^} \]), \n\[\text{^} \] (square, \n\[\text{^} \]), and \sqrt{ } (square root, \n\[\text{2nd} \ \sqrt{ } \]) with real and complex numbers, expressions, lists, and matrices. You cannot use \sqrt{ } with matrices.

\[
\begin{align*}
\text{MathPrint™: value}^{\text{power}} & \quad \text{value}^{2} \\
\text{Classic: value}^{\text{power}} & \quad \sqrt{\text{(value)}}
\end{align*}
\]
Inverse

You can use \(x^{-1} \) (inverse, \(\text{inv} \)) with real and complex numbers, expressions, lists, and matrices. The multiplicative inverse is equivalent to the reciprocal, \(1/x \).

\[
\text{value}^{-1}
\]

\[
\frac{1}{5} = 0.2
\]

\log(), 10^(), ln()

You can use \(\log(\) (logarithm, \(\text{log} \)), \(10^() \) (power of 10, \(\text{2nd} \ [10^] \)), and \(\ln() \) (natural log, \(\text{LN} \)) with real or complex numbers, expressions, and lists.

\[
\log(\text{value}) \quad \text{MathPrint™: } 10^{\text{power}} \quad \ln(\text{value}) \quad \text{Classic: } 10^{\text{power}}
\]

Exponential

\(e^() \) (exponential, \(\text{2nd} \ [e^] \)) returns the constant \(e \) raised to a power. You can use \(e^() \) with real or complex numbers, expressions, and lists.

\[
\text{MathPrint™: } e^{\text{power}} \quad e^5 = 148.4131591
\]

\[
\text{Classic: } e^{\text{power}} \quad e^{5} = 148.4131591
\]

Constant

\(e \) (constant, \(\text{2nd} \ [e] \)) is stored as a constant on the TI-84 Plus. Press \(\text{2nd} \ [e] \) to copy \(e \) to the cursor location. In calculations, the TI-84 Plus uses \(2.718281828459 \) for \(e \).

\[
\text{Ans} = 2.718281828
\]

Negation

\(-() \) (negation, \(\text{(-)} \)) returns the negative of \(\text{value} \). You can use \(-() \) with real or complex numbers, expressions, lists, and matrices.
EOS™ rules (Chapter 1) determine when negation is evaluated. For example, \(-4^2\) returns a negative number, because squaring is evaluated before negation. Use parentheses to square a negated number, as in \((-4)^2\).

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-4^2)</td>
<td>(-16)</td>
</tr>
<tr>
<td>((-4)^2)</td>
<td>16</td>
</tr>
</tbody>
</table>

Note: On the TI-84 Plus, the negation symbol (\(\texttt{-}\)) is shorter and higher than the subtraction sign (\(\texttt{-}\)), which is displayed when you press \(\texttt{[DEL]}\).

Pi

\(\pi\) (\(\texttt{[2nd]}\) [\(\pi\)]) is stored as a constant in the TI-84 Plus. In calculations, the TI-84 Plus uses 3.1415926535898 for \(\pi\).

MATH Operations

MATH Menu

To display the **MATH** menu, press \(\texttt{[MATH]}\).

<table>
<thead>
<tr>
<th>Number</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>(\texttt{Frac})</td>
<td>Displays the answer as a fraction.</td>
</tr>
<tr>
<td>2:</td>
<td>(\texttt{Dec})</td>
<td>Displays the answer as a decimal.</td>
</tr>
<tr>
<td>3:</td>
<td>(3)</td>
<td>Calculates the cube.</td>
</tr>
<tr>
<td>4:</td>
<td>(3^{\sqrt{}})</td>
<td>Calculates the cube root.</td>
</tr>
<tr>
<td>5:</td>
<td>(x^{\sqrt{}})</td>
<td>Calculates the (x^{th}) root.</td>
</tr>
<tr>
<td>6:</td>
<td>(\texttt{fMin})</td>
<td>Finds the minimum of a function.</td>
</tr>
<tr>
<td>7:</td>
<td>(\texttt{fMax})</td>
<td>Finds the maximum of a function.</td>
</tr>
<tr>
<td>8:</td>
<td>(\texttt{nDeriv})</td>
<td>Computes the numerical derivative.</td>
</tr>
</tbody>
</table>
Chapter 2: Math, Angle, and Test Operations

➤Frac, ➤Dec

➤Frac (display as a fraction) displays an answer as its rational equivalent. You can use ➤Frac with real or complex numbers, expressions, lists, and matrices. If the answer cannot be simplified or the resulting denominator is more than three digits, the decimal equivalent is returned. You can only use ➤Frac following value.

value ➤Frac

➤Dec (display as a decimal) displays an answer in decimal form. You can use ➤Dec with real or complex numbers, expressions, lists, and matrices. You can only use ➤Dec following value.

value ➤Dec

Note: You can quickly convert from one number type to the other by using the FRAC shortcut menu. Press [ALPHA][F1] ➤F ➤D to convert a value.

Cube, Cube Root

³ (cube) returns the cube of value. You can use ³ with real or complex numbers, expressions, lists, and square matrices.

value³

³√(cube root) returns the cube root of value. You can use ³√ with real or complex numbers, expressions, and lists.

³√(value)
\(x^{\sqrt{}} \) (Root)

\(x^{\sqrt{}} \) (\(x \)th root) returns the \(x \)th root of value. You can use \(x^{\sqrt{}} \) with real or complex numbers, expressions, and lists.

\(x^{\text{th root}} \times \sqrt{\text{value}}

\[\sqrt[3]{15625} = 5 \]

fMin(), fMax()

fMin((function minimum) and fMax((function maximum) return the value at which the local minimum or local maximum value of expression with respect to variable occurs, between lower and upper values for variable. \(\text{fMin} \) and \(\text{fMax} \) are not valid in expression. The accuracy is controlled by tolerance (if not specified, the default is 1E-5).

\[
\begin{align*}
\text{fMin}(& \sin(x), x, -\pi, \pi) = -1.5707977171 \\
\text{fMax}(& \sin(x), x, -\pi, \pi) = 1.5707977171 \\
\end{align*}
\]

MathPrint™

\[
\begin{align*}
\text{fMin}(& \sin(x), x, -\pi, \pi) = -1.5707977171 \\
\text{fMax}(& \sin(x), x, -\pi, \pi) = 1.5707977171 \\
\end{align*}
\]

Note: In this guidebook, optional arguments and the commas that accompany them are enclosed in brackets ([]).

nDeriv()

\(\text{nDeriv} \) (numerical derivative) returns an approximate derivative of expression with respect to variable, given the value at which to calculate the derivative and \(\varepsilon \) (if not specified, the default is 1E-3). \(\text{nDeriv} \) is valid only for real numbers.
MathPrint™: \(\frac{d}{dx} (13x^2) \big|_{x=1}^{y=1} \)

Classic: \(\text{nDeriv(expression,variable,value[,\varepsilon])} \)

\(\text{nDeriv} \) uses the symmetric difference quotient method, which approximates the numerical derivative value as the slope of the secant line through these points.

\[
 f'(x) = \frac{f(x + \varepsilon) - f(x - \varepsilon)}{2\varepsilon}
\]

As \(\varepsilon \) becomes smaller, the approximation usually becomes more accurate. In MathPrint™ mode, the default \(\varepsilon \) is \(1 \times 10^{-3} \). You can switch to Classic mode to change \(\varepsilon \) for investigations.

![MathPrint™: \(\text{nDeriv}(3x^2, x, -1) \)]

\(\text{nDeriv}(3x^2, x, -1) \)
\(\text{\[-6\]} \)

Classic

You can use \(\text{nDeriv} \) once in \(\text{expression} \). Because of the method used to calculate \(\text{nDeriv} \), the TI-84 Plus can return a false derivative value at a nondifferentiable point.

\(\text{fnInt(} \)

\(\text{fnInt} \) (function integral) returns the numerical integral (Gauss-Kronrod method) of \(\text{expression} \) with respect to \(\text{variable} \), given \(\text{lower limit, upper limit, and a tolerance} \) (if not specified, the default is \(1 \times 10^{-5} \)). \(\text{fnInt(} \) is valid only for real numbers.

MathPrint™: \(\int_{1}^{5} (3x^2 + \frac{1}{2}x^3) \, dx \)

\[
\int_{1}^{5} (3x^2 + \frac{1}{2}x^3) \, dx = 130
\]

Classic: \(\text{fnInt(expression,variable,lower,upper[,tolerance])} \)

\(\text{fnInt}(3x^2 + \frac{1}{2}x^3, x, 1, 5) \)

\(\text{fnInt}(3x^2 + \frac{1}{2}x^3, x, 1, 5) \)
\(\text{130.00} \)

In MathPrint™ mode, the default \(\varepsilon \) is \(1 \times 10^{-3} \). You can switch to Classic mode to change \(\varepsilon \) for investigations.
Note: To speed the drawing of integration graphs (when \texttt{fnInt} is used in a \(Y=\) equation), increase the value of the \texttt{Xres} window variable before you press [GRAPH].

Using the Equation Solver

Solver

Solver displays the equation solver, in which you can solve for any variable in an equation. The equation is assumed to be equal to zero. Solver is valid only for real numbers.

When you select Solver, one of two screens is displayed.

- The equation editor (see step 1 picture below) is displayed when the equation variable \texttt{eqn} is empty.
- The interactive solver editor is displayed when an equation is stored in \texttt{eqn}.

Entering an Expression in the Equation Solver

To enter an expression in the equation solver, assuming that the variable \texttt{eqn} is empty, follow these steps.

1. Select B:Solver from the MATH menu to display the equation editor.

2. Enter the expression in any of three ways.
 - Enter the expression directly into the equation solver.
 - Paste a \(Y=\) variable name from the YVARS shortcut menu (\texttt{[ALPHA] [F4]}) to the equation solver.
 - Press \texttt{Y=}[RCL], paste a \(Y=\) variable name from the YVARS shortcut menu, and press ENTER. The expression is pasted to the equation solver.

The expression is stored to the variable \texttt{eqn} as you enter it.

3. Press [ENTER] or \(\downarrow\). The interactive solver editor is displayed.

- The equation stored in \texttt{eqn} is set equal to zero and displayed on the top line.
- Variables in the equation are listed in the order in which they appear in the equation. Any values stored to the listed variables also are displayed.
- The default lower and upper bounds appear in the last line of the editor (\texttt{bound=\{1e99,1e99\}}).
- A ↓ is displayed in the first column of the bottom line if the editor continues beyond the screen.

\textbf{Note:} To use the solver to solve an equation such as $K=.5MV^2$, enter \texttt{eqn:0=K-.5MV^2} in the equation editor.

\section*{Entering and Editing Variable Values}

When you enter or edit a value for a variable in the interactive solver editor, the new value is stored in memory to that variable.

You can enter an expression for a variable value. It is evaluated when you move to the next variable. Expressions must resolve to real numbers at each step during the iteration.

You can store equations to any \texttt{VARS Y-VARS} variables, such as Y_1 or $r6$, and then reference the variables in the equation. The interactive solver editor displays all variables of all $Y=$ functions recalled in the equation.

\begin{verbatim}
\begin{array}{l}
Y_1=M^2-4AC
\Hline
\texttt{eqn:0=XY+7}
\end{array}
\end{verbatim}

\section*{Solving for a Variable in the Equation Solver}

To solve for a variable using the equation solver after an equation has been stored to \texttt{eqn}, follow these steps.

1. Select \texttt{B:Solver} from the \texttt{MATH} menu to display the interactive solver editor, if not already displayed.

\begin{verbatim}
\begin{array}{l}
X^3+P^2-125=0
\Hline
P=0
\texttt{bound=\{1e99,1\}}
\end{array}
\end{verbatim}

2. Enter or edit the value of each known variable. All variables, except the unknown variable, must contain a value. To move the cursor to the next variable, press \texttt{ENTER} or \texttt{↓}.

\begin{verbatim}
\begin{array}{l}
X^3+P^2-125=0
\Hline
P=5
\texttt{bound=\{1e99,1\}}
\end{array}
\end{verbatim}
3. Enter an initial guess for the variable for which you are solving. This is optional, but it may help find the solution more quickly. Also, for equations with multiple roots, the TI-84 Plus will attempt to display the solution that is closest to your guess.

\[0^3 + P^2 - 125 = 0 \]
\[P = 5 \]
\[\text{bound} = (-1 \times 10^9, 1 \times 10^9) \]

The default guess is calculated as \(\frac{\text{upper} + \text{lower}}{2} \).

4. Edit \(\text{bound} = (\text{lower}, \text{upper}) \). \text{lower} and \text{upper} are the bounds between which the TI-84 Plus searches for a solution. This is optional, but it may help find the solution more quickly. The default is \(\text{bound} = (-1 \times 10^9, 1 \times 10^9) \).

5. Move the cursor to the variable for which you want to solve and press \(\text{\textbullet} \).

- The solution is displayed next to the variable for which you solved. A solid square in the first column marks the variable for which you solved and indicates that the equation is balanced. An ellipsis shows that the value continues beyond the screen.

 Note: When a number continues beyond the screen, be sure to press \(\text{~} \) to scroll to the end of the number to see whether it ends with a negative or positive exponent. A very small number may appear to be a large number until you scroll right to see the exponent.

- The values of the variables are updated in memory.

- \(\text{left} - \text{rt} = \text{diff} \) is displayed in the last line of the editor. \text{diff} is the difference between the left and right sides of the equation when evaluated at the calculated solution. A solid square in the first column next to \text{left} - \text{rt} indicates that the equation has been evaluated at the new value of the variable for which you solved.

Editing an Equation Stored to eqn

To edit or replace an equation stored to \text{eqn} when the interactive equation solver is displayed, press \(\text{\{G} \) until the equation editor is displayed. Then edit the equation.

Equations with Multiple Roots

Some equations have more than one solution. You can enter a new initial guess or new bounds to look for additional solutions.

Further Solutions

After you solve for a variable, you can continue to explore solutions from the interactive solver editor. Edit the values of one or more variables. When you edit any variable value, the solid
squares next to the previous solution and \(\text{left} - \text{rt} = \text{diff} \) disappear. Move the cursor to the variable for which you now want to solve and press \([\text{ALPHA}] \text{[SOLVE]}\).

Controlling the Solution for Solver or solve(

The TI-84 Plus solves equations through an iterative process. To control that process, enter bounds that are relatively close to the solution and enter an initial guess within those bounds. This will help to find a solution more quickly. Also, it will define which solution you want for equations with multiple solutions.

Using solve(on the Home Screen or from a Program

The function solve(is available only from CATALOG or from within a program. It returns a solution (root) of expression for variable, given an initial guess, and lower and upper bounds within which the solution is sought. The default for lower is \(-1 \times 10^9\). The default for upper is \(1 \times 10^9\). solve(is valid only for real numbers.

\[
\text{solve(expression,variable,guess[,\{lower,upper\}]})
\]

expression is assumed equal to zero. The value of variable will not be updated in memory. guess may be a value or a list of two values. Values must be stored for every variable in expression, except variable, before expression is evaluated. lower and upper must be entered in list format.

```
5+P
\text{solve}(Q^2+(P^2-125),\quad 4.641588834
4.641588834
```

MathPrint™

```
5+P
\text{solve}(Q^2+(P^2-125),\quad 4.641588834
4.641588834
```

Classic

MATH NUM (Number) Operations

MATH NUM Menu

To display the MATH NUM menu, press \([\text{MATH}] \text{[\|]}\).

<table>
<thead>
<tr>
<th>MATH NUM</th>
<th>CPX</th>
<th>PRB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: \text{abs}</td>
<td>\text{Absolute value}</td>
<td></td>
</tr>
<tr>
<td>2: \text{round}</td>
<td>\text{Round}</td>
<td></td>
</tr>
<tr>
<td>3: \text{iPart}</td>
<td>\text{Integer part}</td>
<td></td>
</tr>
</tbody>
</table>
abs

abs (absolute value) returns the absolute value of real or complex (modulus) numbers, expressions, lists, and matrices.

Note: abs(is also found on the FUNC shortcut menu (ALPHA [F2] 1).

abs(value)

MathPrint™

\[
\text{abs}(-256) = 256 \\
\text{abs}([1.25, -5.67]) = 5.67
\]

Classic

\[
\text{abs}(-256) = 256 \\
\text{abs}([1.25, -5.67]) = 5.67
\]

Note: abs(is also available on the MATH CPX menu.
round()

round(returns a number, expression, list, or matrix rounded to #decimals (≤9). If #decimals is omitted, value is rounded to the digits that are displayed, up to 10 digits.

\[
\text{round(value[#decimals])}
\]

\[
\begin{array}{|c|c|}
\hline
\text{round(} \frac{15}{8} \cdot 2) & 1.88 \\
\frac{15}{8} \cdot F \leftrightarrow D & 1.875 \\
\hline
\text{round(} 2.16753 \cdot 2.168 & 1.875 \\
\frac{15}{8} \cdot F \leftrightarrow D & 1.875 \\
\hline
\end{array}
\]

iPart(), fPart()

iPart((integer part) returns the integer part or parts of real or complex numbers, expressions, lists, and matrices.

\[
iPart(value)
\]

\[
\begin{array}{|c|c|}
\hline
\text{iPart(} -6.75 & -6 \\
iPart(\pi) & 3 \\
\frac{\pi}{2} & 3.141592654 \\
\hline
\end{array}
\]

fPart((fractional part) returns the fractional part or parts of real or complex numbers, expressions, lists, and matrices.

fPart(value)

Note: The way the fractional result is displayed depends on the Answers mode setting. To convert from one format to another, use \(\text{F} \leftrightarrow \text{D} \) on the FRAC shortcut menu (\(\text{ALPHA} \) [F] 4).

\[
\begin{array}{|c|c|}
\hline
\text{fPart(} 5\frac{1}{2} & \frac{1}{2} \\
\text{Ans} \cdot F \leftrightarrow D & .5 \\
\hline
\end{array}
\]

int()

int((greatest integer) returns the largest integer ≤ real or complex numbers, expressions, lists, and matrices.

int(value)
Note: For a given value, the result of \texttt{int()} is the same as the result of \texttt{iPart()} for nonnegative numbers and negative integers, but one integer less than the result of \texttt{iPart()} for negative noninteger numbers.

min(), max()

\texttt{min()} (minimum value) returns the smaller of \texttt{valueA} and \texttt{valueB} or the smallest element in \texttt{list}. If \texttt{listA} and \texttt{listB} are compared, \texttt{min()} returns a list of the smaller of each pair of elements. If \texttt{list} and \texttt{value} are compared, \texttt{min()} compares each element in \texttt{list} with \texttt{value}.

\texttt{max()} (maximum value) returns the larger of \texttt{valueA} and \texttt{valueB} or the largest element in \texttt{list}. If \texttt{listA} and \texttt{listB} are compared, \texttt{max()} returns a list of the larger of each pair of elements. If \texttt{list} and \texttt{value} are compared, \texttt{max()} compares each element in \texttt{list} with \texttt{value}.

\begin{align*}
\texttt{min(valueA,valueB)} & & \texttt{max(valueA,valueB)} \\
\texttt{min(list)} & & \texttt{max(list)} \\
\texttt{min(listA,listB)} & & \texttt{max(listA,listB)} \\
\texttt{min(list,value)} & & \texttt{max(list,value)} \\
\end{align*}

Note: \texttt{min()} and \texttt{max()} also are available on the **LIST MATH** menu.

lcm(), gcd()

\texttt{lcm()} returns the least common multiple of \texttt{valueA} and \texttt{valueB}, both of which must be nonnegative integers. When \texttt{listA} and \texttt{listB} are specified, \texttt{lcm()} returns a list of the least common multiple of each pair of elements. If \texttt{list} and \texttt{value} are specified, \texttt{lcm()} finds the least common multiple of each element in \texttt{list} and \texttt{value}.

\texttt{gcd()} returns the greatest common divisor of \texttt{valueA} and \texttt{valueB}, both of which must be nonnegative integers. When \texttt{listA} and \texttt{listB} are specified, \texttt{gcd()} returns a list of the greatest common divisor of each pair of elements. If \texttt{list} and \texttt{value} are specified, \texttt{gcd()} finds the greatest common divisor of each element in \texttt{list} and \texttt{value}.

\begin{align*}
\texttt{lcm(valueA,valueB)} & & \texttt{gcd(valueA,valueB)} \\
\texttt{lcm(listA,listB)} & & \texttt{gcd(listA,listB)} \\
\texttt{lcm(list,value)} & & \texttt{gcd(list,value)} \\
\end{align*}
remainder(

remainder(returns the remainder resulting from the division of two positive whole numbers, dividend and divisor, each of which can be a list. The divisor cannot be zero. If both arguments are lists, they must have the same number of elements. If one argument is a list and the other a non-list, the non-list is paired with each element of the list, and a list is returned.

\[
\text{remainder}(\text{dividend}, \text{divisor}) \quad \text{remainder}(10, 4) = 2
\]

\[
\text{remainder}(\text{list}, \text{divisor}) \quad \text{remainder}(\langle 5, 5, 5, 5 \rangle, L_1) = \langle 5, 5, 5, 5 \rangle \text{ remainder}(L_1, 2) = \langle 1, 1, 1, 1 \rangle
\]

\[
\text{remainder}(\text{dividend}, \text{list}) \quad \text{remainder}(3, L_1) = \langle 3, 3, 3, 3 \rangle
\]

\[
\text{remainder}(\text{list}, \text{list}) \quad \text{remainder}(\langle 1, 2, 3, 4, 5 \rangle, L_2) = \langle 1, 2, 1, 0 \rangle
\]

\[\n/d \leftrightarrow Un/d\]

\[\n/d \leftrightarrow Un/d\] converts an improper fraction to a mixed number or a mixed number to an improper fraction. You can also access \[\n/d \leftrightarrow Un/d\] from the FRAC shortcut menu (\[\text{ALPHA}\ [\text{F1}]\ 3\]).
\[\text{F} \leftrightarrow \text{D}\]

\[\text{F} \leftrightarrow \text{D}\] converts a fraction to a decimal or a decimal to a fraction. You can also access \[\text{F} \leftrightarrow \text{D}\] from the FRAC shortcut menu \((\text{ALPHA} [F] 4)\).

\[
\frac{17}{21} \rightarrow \text{F} \leftrightarrow \text{D} \quad 0.8095238095 \\
0.865 \rightarrow \text{F} \leftrightarrow \text{D} \quad \frac{133}{178}
\]

\[\text{Un/d}\]

\[\text{Un/d}\] displays the mixed number template. You can also access \[\text{Un/d}\] from the FRAC shortcut menu \((\text{ALPHA} [F] 2)\). In the fraction, \(n\) and \(d\) must be non-negative integers.

MathPrint™

\[
\frac{11}{11} \rightarrow \frac{2}{2}
\]

Classic

\[
5 \frac{3}{4}
\]

\[\text{n/d}\]

\[\text{n/d}\] displays the mixed number template. You can also access \[\text{n/d}\] from the FRAC shortcut menu \((\text{ALPHA} [F] 1)\). \(n\) and \(d\) can be real numbers or expressions but may not contain complex numbers.

MathPrint™

\[
\frac{12}{12} \rightarrow \frac{4}{4}
\]

Classic

\[
4 \sqrt{5}
\]

Entering and Using Complex Numbers

Complex-Number Modes

The TI-84 Plus displays complex numbers in rectangular form and polar form. To select a complex-number mode, press \([\text{MODE}]\), and then select either of the two modes.

- \(a+bi\) (rectangular-complex mode)
- \(re^{\theta}i\) (polar-complex mode)
On the TI-84 Plus, complex numbers can be stored to variables. Also, complex numbers are valid list elements.

In Real mode, complex-number results return an error, unless you entered a complex number as input. For example, in Real mode \(\ln(-1) \) returns an error; in a+b\(\) mode \(\ln(-1) \) returns an answer.

```
Real mode                              a+b\( \) mode
\[ \ln(-1) \]                          \[ \ln(-1) \]  
\[ \downarrow \]  
\text{ERR: NONREAL ANS}               \text{ERR: REAL}  
1: Quit                               3.141592654i
2: Goto                               3.141592654i
```

Entering Complex Numbers

Complex numbers are stored in rectangular form, but you can enter a complex number in rectangular form or polar form, regardless of the mode setting. The components of complex numbers can be real numbers or expressions that evaluate to real numbers; expressions are evaluated when the command is executed.

You can enter fractions in complex numbers, but the output will always be a decimal value.

```
\frac{1}{2} + \frac{1}{4}i                     .5 + .25i
```

When you use the n/d template, a fraction cannot contain a complex number.

```
\text{ERR: DATA TYPE}  
1: Quit                      2: Goto
```

You can use division to compute the answer:

```
(1+i)/(1-i)                      i
```
Note about Radian Versus Degree Mode

Radian mode is recommended for complex number calculations. Internally, the TI-84 Plus converts all entered trigonometric values to radians, but it does not convert values for exponential, logarithmic, or hyperbolic functions.

In degree mode, complex identities such as $e^{i\theta} = \cos(\theta) + i \sin(\theta)$ are not generally true because the values for \cos and \sin are converted to radians, while those for e^x are not. For example, $e^{i45} = \cos(45) + i \sin(45)$ is treated internally as $e^{i\pi/4} = \cos(\pi/4) + i \sin(\pi/4)$. Complex identities are always true in radian mode.

Interpreting Complex Results

Complex numbers in results, including list elements, are displayed in either rectangular or polar form, as specified by the mode setting or by a display conversion instruction. In the example below, polar-complex ($re^{i\theta}$) and Radian modes are set.

MathPrint™:

\[
\begin{array}{c}
\frac{\langle 2+i \rangle - \langle 1e^{\pi/4} \rangle}{1.325654296e^{\pi/4}}
\end{array}
\]

Classic:

\[
\begin{array}{c}
\frac{\langle 2+i \rangle - \langle 1e^{\pi/4} \rangle}{1.325654296e^{\pi/4}}
\end{array}
\]

Rectangular-Complex Mode

Rectangular-complex mode recognizes and displays a complex number in the form $a+b\,i$, where a is the real component, b is the imaginary component, and i is a constant equal to $\sqrt{-1}$.

\[
\ln\langle -\frac{1}{3} \rangle = 1.41592654i
\]

To enter a complex number in rectangular form, enter the value of a (real component), press $\boxed{+}$ or $\boxed{-}$, enter the value of b (imaginary component), and press $\boxed{2nd}$ $[i]$ (constant).

\[
4+2i
\]

Polar-Complex Mode

Polar-complex mode recognizes and displays a complex number in the form $re^{i\theta}$, where r is the magnitude, e is the base of the natural log, θ is the angle, and i is a constant equal to $\sqrt{-1}$.

\[
\ln\langle -\frac{1}{3} \rangle = 1.41592654e^{i(1...}
\]
To enter a complex number in polar form, enter the value of \(r \) (magnitude), press \(\text{2nd} \ [\text{a}^3] \) (exponential function), enter the value of \(\theta \) (angle), press \(\text{2nd} \ [i] \) (constant), and then press \(\boxed{\text{1}} \).

\[
\text{magnitude} \cdot e^{i \text{angle}}
\]

\[
10e^{\frac{\pi}{3}i}
\]

\[
10e^{1.04719755i}
\]

MathPrint™

\[
10e^{\left(\sqrt{3}i\right)}
\]

\[
10e^{1.04719755i}
\]

Classic
MATH CPX (Complex) Operations

MATH CPX Menu

To display the MATH CPX menu, press [MATH] \[\] [\].

<table>
<thead>
<tr>
<th>MATH NUM</th>
<th>CPX PRB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>conj(</td>
</tr>
<tr>
<td>2:</td>
<td>real(</td>
</tr>
<tr>
<td>3:</td>
<td>imag(</td>
</tr>
<tr>
<td>4:</td>
<td>angle(</td>
</tr>
<tr>
<td>5:</td>
<td>abs(</td>
</tr>
<tr>
<td>6:</td>
<td>Rect</td>
</tr>
<tr>
<td>7:</td>
<td>Polar</td>
</tr>
</tbody>
</table>

conj((conjugate) returns the complex conjugate of a complex number or list of complex numbers.

\[
\text{conj}(a+bi) \text{ returns } a-bi \text{ in a}+b\text{i mode.}
\]

\[
\text{conj}(re^{\theta i}) \text{ returns } r\cos(\theta) \text{ in re}^{\theta i} \text{ mode.}
\]

MathPrint™ Classic

\[
\text{conj}(3+4i) \quad 3-4i
\]

\[
\text{conj}(3e^{\pi i}) \quad 3e^{2.28318530766}
\]

\[
\text{conj}(3e^{\pi i}) \quad 3e^{(2.28318530766)}
\]

real((real part) returns the real part of a complex number or list of complex numbers.

\[
\text{real}(a+bi) \text{ returns } a.
\]

\[
\text{real}(re^{\theta i}) \text{ returns } r\cos(\theta).
\]

MathPrint™ Classic

\[
\text{real}(3+4i) \quad 3
\]

\[
\text{real}(3e^{\pi i}) \quad -1.960938063
\]

\[
\text{real}(3e^{\pi i}) \quad 1.960938063
\]
imag()

imag((imaginary part) returns the imaginary (nonreal) part of a complex number or list of complex numbers.

imag(a+bi) returns b.
imag(re^(θi)) returns r*sin(θ).

<table>
<thead>
<tr>
<th>MathPrint™</th>
<th>Classic</th>
</tr>
</thead>
<tbody>
<tr>
<td>imag(3+4i)</td>
<td>4</td>
</tr>
<tr>
<td>imag(3e^4i)</td>
<td>-2.270407486</td>
</tr>
</tbody>
</table>

angle()

angle(returns the polar angle of a complex number or list of complex numbers, calculated as \(\tan^{-1}(b/a) \), where b is the imaginary part and a is the real part. The calculation is adjusted by \(+\pi \) in the second quadrant or \(-\pi \) in the third quadrant.

angle(a+bi) returns \(\tan^{-1}(b/a) \).
angle(re^(θi)) returns θ, where \(-\pi < θ < \pi \).

<table>
<thead>
<tr>
<th>MathPrint™</th>
<th>Classic</th>
</tr>
</thead>
<tbody>
<tr>
<td>angle(3+4i)</td>
<td>.927295218</td>
</tr>
<tr>
<td>angle(3e^4i)</td>
<td>-2.263185307</td>
</tr>
</tbody>
</table>

abs()

abs((absolute value) returns the magnitude (modulus), \(\sqrt{real^2 + mag^2} \), of a complex number or list of complex numbers. You can also access abs(from the FUNC shortcut menu (ALPHA [F2] 1).
abs(a+bi) returns $\sqrt{a^2 + b^2}$.

abs(r e^{(\theta)i}) returns r (magnitude).

$\sqrt{\text{real}^2 - \text{imag}^2}$

<table>
<thead>
<tr>
<th>abs(3+4i)</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs(3e^{(4i)})</td>
<td>3</td>
</tr>
</tbody>
</table>

Rect

Rect (display as rectangular) displays a complex result in rectangular form. It is valid only at the end of an expression. It is not valid if the result is real.

canplex result ▶ Rect returns $a+bi$.

| (-2)+Rect | 1.414213562i |

Polar

Polar (display as polar) displays a complex result in polar form. It is valid only at the end of an expression. It is not valid if the result is real.

canplex result ▶ Polar returns $r e^{(\theta)i}$.

| (-2)+Polar | 1.414213562e^{1.5708i} |

MATH PRB (Probability) Operations

MATH PRB Menu

To display the MATH PRB menu, press [MATH] ▶.

MATH NUM CPX PRB

1: rand Random-number generator
rand

rand (random number) generates and returns one or more random numbers > 0 and < 1. To generate a list of random-numbers, specify an integer > 1 for numtrials (number of trials). The default for numtrials is 1.

rand([numtrials])

Note: To generate random numbers beyond the range of 0 to 1, you can include rand in an expression. For example, rand5 generates a random number > 0 and < 5.

With each rand execution, the TI-84 Plus generates the same random-number sequence for a given seed value. The TI-84 Plus factory-set seed value for rand is 0. To generate a different random-number sequence, store any nonzero seed value to rand. To restore the factory-set seed value, store 0 to rand or reset the defaults (Chapter 18).

Note: The seed value also affects randInt(, randNorm(, and randBin(instructions.

nPr, nCr

nPr (number of permutations) returns the number of permutations of items taken number at a time. items and number must be nonnegative integers. Both items and number can be lists.

items nPr number

nCr (number of combinations) returns the number of combinations of items taken number at a time. items and number must be nonnegative integers. Both items and number can be lists.

items nCr number
Factorial

\(n!\) (factorial) returns the factorial of either an integer or a multiple of .5. For a list, it returns factorials for each integer or multiple of .5. \(\text{value}\) must be \(\geq -.5\) and \(\leq 69\).

\[\text{value!}\]

Note: The factorial is computed recursively using the relationship \((n+1)! = n! \cdot n\), until \(n\) is reduced to either 0 or -1/2. At that point, the definition \(0! = 1\) or the definition \((-1/2)! = \sqrt{\pi}\) is used to complete the calculation. Hence:

\[n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1, \text{ if } n \text{ is an integer } \geq 0\]
\[n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1/2 \cdot \sqrt{\pi}, \text{ if } n+1/2 \text{ is an integer } \geq 0\]
\[n! \text{ is an error, if neither } n \text{ nor } n+1/2 \text{ is an integer } \geq 0.\]

(The variable \(n\) equals \(\text{value}\) in the syntax description above.)

\text{randInt(}

\text{randInt(} (random integer) generates and displays a random integer within a range specified by \(\text{lower}\) and \(\text{upper}\) integer bounds. To generate a list of random numbers, specify an integer > 1 for \(\text{numtrials}\) (number of trials); if not specified, the default is 1.

\[\text{randInt(}\text{lower},\text{upper},\text{numtrials})\]

\text{randNorm(}

\text{randNorm(} (random Normal) generates and displays a random real number from a specified Normal distribution. Each generated value could be any real number, but most will be within the interval \([\mu - 3(\sigma), \mu + 3(\sigma)]\). To generate a list of random numbers, specify an integer > 1 for \(\text{numtrials}\) (number of trials); if not specified, the default is 1.

\[\text{randNorm(}\mu,\sigma,\text{numtrials})\]
[randBin(

randBin((random Binomial) generates and displays a random integer from a specified Binomial distribution. numtrials (number of trials) must be \(\geq 1 \), prob (probability of success) must be \(\geq 0 \) and \(\leq 1 \). To generate a list of random numbers, specify an integer \(> 1 \) for numsimulations (number of simulations); if not specified, the default is 1.

randBin(numtrials,prob[numsimulations])

Note: The seed value stored to rand also affects randInt, randNorm, and randBin instructions.

randIntNoRep(

randIntNoRep(returns a random ordered list of integers from a lower integer to an upper integer. The list of integers may include the lower integer and the upper integer.

randIntNoRep(lowerint, upperint)

MathPrint™ Classic

ANGLE Operations

ANGLE Menu

To display the ANGLE menu, press \(\text{2nd} \) [ANGLE]. The ANGLE menu displays angle indicators and instructions. The Radian/Degree mode setting affects the TI-84 Plus’s interpretation of ANGLE menu entries.

<table>
<thead>
<tr>
<th>ANGLE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: °</td>
<td>Degree notation</td>
</tr>
<tr>
<td>2: ′</td>
<td>DMS minute notation</td>
</tr>
</tbody>
</table>
DMS (degrees/minutes/seconds) entry notation comprises the degree symbol (°), the minute symbol (‘), and the second symbol (""). *degrees* must be a real number, *minutes* and *seconds* must be real numbers ≥ 0.

Note: DMS entry notation does not support fractions in minutes or seconds.

degrees’minutes’seconds"

For example, we know that 30 degrees is the same as \(\pi/6 \) radians, and we can verify that by looking at the values in degree and radian modes. If the angle mode is not set to Degree, you must use ° so that the TI-84 Plus can interpret the argument as degrees, minutes, and seconds.

<table>
<thead>
<tr>
<th>Degree mode</th>
<th>Radian mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin(30))</td>
<td>(\sin(30°))</td>
</tr>
<tr>
<td>(0.5)</td>
<td>(0.866025404)</td>
</tr>
</tbody>
</table>

Degree

° (degree) designates an angle or list of angles as degrees, regardless of the current angle mode setting. In Radian mode, you can use ° to convert degrees to radians.

\[\text{value}° \]
\[\{\text{value}_1, \text{value}_2, \text{value}_3, \text{value}_4, \ldots, \text{value}_n\}° \]

° also designates *degrees* (D) in DMS format.

‘ (minutes) designates *minutes* (M) in DMS format.

" (seconds) designates *seconds* (S) in DMS format.

Note: “ is not on the ANGLE menu. To enter “, press \[\text{ALPHA} [”] \].
Radians

r (radians) designates an angle or list of angles as radians, regardless of the current angle mode setting. In Degree mode, you can use r to convert radians to degrees.

$value^r$

Degree mode

\[
\begin{align*}
\sin\left(\pi/4\right)^r &= \sqrt{2}/2 \\
\sin\left(\theta, \pi/2\right)^r &= 1 \\
\left(\pi/4\right)^r &= 45
\end{align*}
\]

►DMS

►DMS (degree/minute/second) displays answer in DMS format. The mode setting must be Degree for answer to be interpreted as degrees, minutes, and seconds. ►DMS is valid only at the end of a line.

answer►DMS

\[
\begin{align*}
54^\circ32'38'' &= \sin\left(\pi/4\right)^r, \\
109.8633333 &= \sin\left(\theta, \pi/2\right)^r, \\
109^\circ8' &= \left(\pi/4\right)^r
\end{align*}
\]

$\text{R}►\text{Pr}(, \text{R}►\text{Pθ}(, \text{R}►\text{Rx}(, \text{R}►\text{Ry}(\text{v}, \text{v})$

$\text{R}►\text{Pr}$ converts rectangular coordinates to polar coordinates and returns r. $\text{R}►\text{Pθ}$ converts rectangular coordinates to polar coordinates and returns $θ$. x and y can be lists.

$\text{R}►\text{Pr}(v, v)$, $\text{R}►\text{Pθ}(v, v)$

\[
\begin{align*}
\text{R}►\text{Pr}\left(-1, 0\right) &= \sqrt{2}, \\
\text{R}►\text{Pθ}\left(-1, 0\right) &= 3.141592654
\end{align*}
\]

$\text{P}►\text{Rx}$ converts polar coordinates to rectangular coordinates and returns x. $\text{P}►\text{Ry}$ converts polar coordinates to rectangular coordinates and returns y. r and $θ$ can be lists.

$\text{P}►\text{Rx}(r, θ)$, $\text{P}►\text{Ry}(r, θ)$

\[
\begin{align*}
\text{P}►\text{Rx}(1, \pi) &= -1, \\
\text{P}►\text{Ry}(1, \pi) &= 0
\end{align*}
\]

Note: Radian mode is set.

TEST (Relational) Operations

TEST Menu

To display the TEST menu, press [2nd] [TEST].

<table>
<thead>
<tr>
<th>This operator...</th>
<th>Returns 1 (true) if...</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST LOGIC</td>
<td></td>
</tr>
<tr>
<td>1: =</td>
<td>Equal</td>
</tr>
<tr>
<td>2: ≠</td>
<td>Not equal to</td>
</tr>
<tr>
<td>3: ></td>
<td>Greater than</td>
</tr>
<tr>
<td>4: ≥</td>
<td>Greater than or equal to</td>
</tr>
<tr>
<td>5: <</td>
<td>Less than</td>
</tr>
<tr>
<td>6: ≤</td>
<td>Less than or equal to</td>
</tr>
</tbody>
</table>

=, ≠, >, ≥, <, ≤

Relational operators compare \(valueA \) and \(valueB \) and return 1 if the test is true or 0 if the test is false. \(valueA \) and \(valueB \) can be real numbers, expressions, or lists. For = and ≠ only, \(valueA \) and \(valueB \) also can be matrices or complex numbers. If \(valueA \) and \(valueB \) are matrices, both must have the same dimensions.

Relational operators are often used in programs to control program flow and in graphing to control the graph of a function over specific values.

\[
\begin{array}{l}
valueA=valueB \\
valueA>valueB \\
valueA<valueB
\end{array}
\]

Using Tests

Relational operators are evaluated after mathematical functions according to EOS rules (Chapter 1).

- The expression \(2+2=2+3 \) returns 0. The TI-84 Plus performs the addition first because of EOS rules, and then it compares 4 to 5.
- The expression \(2*(2=2)+3 \) returns 6. The TI-84 Plus performs the relational test first because it is in parentheses, and then it adds 2, 1, and 3.
TEST LOGIC (Boolean) Operations

TEST LOGIC Menu

To display the TEST LOGIC menu, press \[\text{2nd} \ [\text{TEST}] \ [\text{X}] \].

<table>
<thead>
<tr>
<th>This operator...</th>
<th>Returns a 1 (true) if...</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST LOGIC</td>
<td></td>
</tr>
<tr>
<td>1: and</td>
<td>Both values are nonzero (true).</td>
</tr>
<tr>
<td>2: or</td>
<td>At least one value is nonzero (true).</td>
</tr>
<tr>
<td>3: xor</td>
<td>Only one value is zero (false).</td>
</tr>
<tr>
<td>4: not(value)</td>
<td>The value is zero (false).</td>
</tr>
</tbody>
</table>

Boolean Operators

Boolean operators are often used in programs to control program flow and in graphing to control the graph of the function over specific values. Values are interpreted as zero (false) or nonzero (true).

and, or, xor

and, or, and xor (exclusive or) return a value of 1 if an expression is true or 0 if an expression is false, according to the table below. \(valueA \) and \(valueB \) can be real numbers, expressions, or lists.

\[
\begin{align*}
valueA & \quad and & \quad valueB & \quad or & \quad xor \\
\ne0 & \quad \ne0 & \quad returns & \quad 1 & \quad 1 & \quad 0 \\
\ne0 & \quad 0 & \quad returns & \quad 0 & \quad 1 & \quad 1 \\
0 & \quad \ne0 & \quad returns & \quad 0 & \quad 1 & \quad 1 \\
0 & \quad 0 & \quad returns & \quad 0 & \quad 0 & \quad 0 \\
\end{align*}
\]

not(

not(value) returns 1 if \(value \) (which can be an expression) is 0.

not(value)

Using Boolean Operations
Boolean logic is often used with relational tests. In the following program, the instructions store 4 into C.

```
PROGRAM BOOLEAN
  2+4=6
  If A=2 and B=3
  Then: 4>C
  Else: 5>C
  End
```
Chapter 3: Function Graphing

Getting Started: Graphing a Circle

Getting Started is a fast-paced introduction. Read the chapter for details.

Graph a circle of radius 10, centered on the origin in the standard viewing window. To graph this circle, you must enter separate formulas for the upper and lower portions of the circle. Then use ZSquare (zoom square) to adjust the display and make the functions appear as a circle.

1. In Func mode, press \text{Y=} to display the Y= editor. Press \text{2nd} \[\text{[\text{100-X^2}]}\) to enter the expression \(Y=\sqrt{100-X^2}\), which defines the top half of the circle.

The expression \(Y=-\sqrt{100-X^2}\) defines the bottom half of the circle. On the TI-84 Plus, you can define one function in terms of another. To define \(Y_2=Y_1\), press \[\text{[\text{1]}]\) to enter the negation sign. Press \text{ } \text{ALPHA} \[\text{[4]}\) to display the Y-VARS shortcut menu, and then press \[\text{[\text{1]}]\) to select \(Y_1\).

2. Press \text{ZOOM 6} to select \text{6:ZStandard}. This is a quick way to reset the window variables to the standard values. It also graphs the functions; you do not need to press \text{GRAPH}.

Notice that the functions appear as an ellipse in the standard viewing window. This is due to the range of values that ZStandard defines for the X-axis and Y-axis.

3. To adjust the display so that each pixel represents an equal width and height, press \text{ZOOM 5} to select \text{5:ZSquare}. The functions are replotted and now appear as a circle on the display.
Defining Graphs

TI-84 Plus—Graphing Mode Similarities

Chapter 3 specifically describes function graphing, but the steps shown here are similar for each TI-84 Plus graphing mode. Chapters 4, 5, and 6 describe aspects that are unique to parametric graphing, polar graphing, and sequence graphing.

Defining a Graph

To define a graph in any graphing mode, follow these steps. Some steps are not always necessary.

1. Press \(\text{MODE} \) and set the appropriate graph mode.
2. Press \(\text{Y=} \) and enter, edit, or select one or more functions in the Y= editor.
3. Deselect stat plots, if necessary.
4. Set the graph style for each function.
5. Press \(\text{WINDOW} \) and define the viewing window variables.
6. Press \(\text{2nd} \) [\text{FORMAT}] and select the graph format settings.

Displaying and Exploring a Graph

After you have defined a graph, press \(\text{GRAPH} \) to display it. Explore the behavior of the function or functions using the TI-84 Plus tools described in this chapter.

Saving a Graph for Later Use

You can store the elements that define the current graph to any of 10 graph database variables (GDB1 through GDB9, and GDB0; Chapter 8). To recreate the current graph later, simply recall the graph database to which you stored the original graph.

These types of information are stored in a GDB.

- \(\text{Y=} \) functions
- Graph style settings
- Window settings
- Format settings
You can store a picture of the current graph display to any of 10 graph picture variables (Pic1 through Pic9, and Pic0; Chapter 8). Then you can superimpose one or more stored pictures onto the current graph.

Setting the Graph Modes

Checking and Changing the Graphing Mode

To display the mode screen, press MODE. The default settings are highlighted below. To graph functions, you must select Func mode before you enter values for the window variables and before you enter the functions.

The TI-84 Plus has four graphing modes.

- **Func** (function graphing)
- **Par** (parametric graphing; Chapter 4)
- **Pol** (polar graphing; Chapter 5)
- **Seq** (sequence graphing; Chapter 6)

Other mode settings affect graphing results. Chapter 1 describes each mode setting.

- **Float** or **0123456789** (fixed) decimal mode affects displayed graph coordinates.
- **Radian** or **Degree** angle mode affects interpretation of some functions.
- **Connected** or **Dot** plotting mode affects plotting of selected functions.
- **Sequential** or **Simul** graphing-order mode affects function plotting when more than one function is selected.

Setting Modes from a Program

To set the graphing mode and other modes from a program, begin on a blank line in the program editor and follow these steps.

1. Press **MODE** to display the mode settings.
2. Press **culus**, **^**,**7**, and **2** to place the cursor on the mode that you want to select.
3. Press **ENTER** to paste the mode name to the cursor location.

The mode is changed when the program is executed.
Defining Functions

Displaying Functions in the Y= Editor

To display the Y= editor, press \(\text{Y}= \). You can store up to 10 functions to the function variables Y1 through Y9, and Y0. You can graph one or more defined functions at once. In this example, functions Y1 and Y2 are defined and selected.

<table>
<thead>
<tr>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(100 - X^2)</td>
<td>(-Y_1)</td>
<td>(=)</td>
</tr>
<tr>
<td>(=)</td>
<td>(=)</td>
<td>(=)</td>
</tr>
<tr>
<td>(=)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defining or Editing a Function

To define or edit a function, follow these steps.

1. Press \(\text{Y}= \) to display the Y= editor.
2. Press \(\text{Y}= \) to move the cursor to the function you want to define or edit. To erase a function, press CLEAR.
3. Enter or edit the expression to define the function.
 - You may use functions and variables (including matrices and lists) in the expression. When the expression evaluates to a nonreal number, the value is not plotted; no error is returned.
 - You can access the shortcut menus by pressing \(\text{ALPHA} \) [F1] - [F4].
 - The independent variable in the function is \(X \). Func mode defines \([X,T, \Theta, \Phi] \) as \(X \). To enter \(X \), press \([X,T, \Theta, \Phi] \) or press \(\text{ALPHA} \) [X].
 - When you enter the first character, the = is highlighted, indicating that the function is selected.
 - As you enter the expression, it is stored to the variable \(Y_n \) as a user-defined function in the Y= editor.
4. Press \(\text{ENTER} \) or \(\text{Y}= \) to move the cursor to the next function.

Defining a Function from the Home Screen or a Program

To define a function from the home screen or a program, begin on a blank line and follow these steps.

1. Press \(\text{ALPHA} \) [''], enter the expression, and then press \(\text{ALPHA} \) [''] again.
2. Press \(\text{STO} \).
3. Press [ALPHA] [F4] to display the YVAR shortcut menu, move the cursor to the function name, and then press ENTER.

expression→Y_n

When the instruction is executed, the TI-84 Plus stores the expression to the designated variable Y_n, selects the function, and displays the message Done.

Evaluating Y= Functions in Expressions

You can calculate the value of a Y= function Y_n at a specified value of X. A list of values returns a list.

$Y_n(\text{value})$

$Y_n(\{\text{value1,value2,value3, . . .,value n}\})$

Selecting and Deselecting Functions

Selecting and Deselecting a Function

You can select and deselect (turn on and turn off) a function in the Y= editor. A function is selected when the $=$ sign is highlighted. The TI-84 Plus graphs only the selected functions. You can select any or all functions Y1 through Y9, and Y0.

To select or deselect a function in the Y= editor, follow these steps.

1. Press [Y=] to display the Y= editor.
2. Move the cursor to the function you want to select or deselect.
4. Press ENTER to change the selection status.

When you enter or edit a function, it is selected automatically. When you clear a function, it is deselected.
Turning On or Turning Off a Stat Plot in the Y= Editor

To view and change the on/off status of a stat plot in the Y= editor, use Plot1 Plot2 Plot3 (the top line of the Y= editor). When a plot is on, its name is highlighted on this line.

To change the on/off status of a stat plot from the Y= editor, press ▲ and ▼ to place the cursor on Plot1, Plot2, or Plot3, and then press ENTER.

Selecting and Deselecting Functions from the Home Screen or a Program

To select or deselect a function from the home screen or a program, begin on a blank line and follow these steps.

1. Press VARS ▼ to display the VARS Y-VARS menu.
2. Select 4:On/Off to display the ON/OFF secondary menu.
3. Select 1:FnOn to turn on one or more functions or 2:FnOff to turn off one or more functions. The instruction you select is copied to the cursor location.
4. Enter the number (1 through 9, or 0; not the variable Yn) of each function you want to turn on or turn off.
 • If you enter two or more numbers, separate them with commas.
 • To turn on or turn off all functions, do not enter a number after FnOn or FnOff.
 FnOn[function#,function#, . . .,function n]
 FnOff[function#,function#, . . .,function n]
5. Press ENTER. When the instruction is executed, the status of each function in the current mode is set and Done is displayed.

For example, in Func mode, FnOff :FnOn 1,3 turns off all functions in the Y= editor, and then turns on Y1 and Y3.
Setting Graph Styles for Functions

MATH Graph Style Icons in the Y= Editor

This table describes the graph styles available for function graphing. Use the styles to visually differentiate functions to be graphed together. For example, you can set Y1 as a solid line, Y2 as a dotted line, and Y3 as a thick line.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Style</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\</td>
<td>Line</td>
<td>A solid line connects plotted points; this is the default in Connected mode</td>
</tr>
<tr>
<td>\</td>
<td>Thick</td>
<td>A thick solid line connects plotted points</td>
</tr>
<tr>
<td>\</td>
<td>Above</td>
<td>Shading covers the area above the graph</td>
</tr>
<tr>
<td>\</td>
<td>Below</td>
<td>Shading covers the area below the graph</td>
</tr>
<tr>
<td>\</td>
<td>Path</td>
<td>A circular cursor traces the leading edge of the graph and draws a path</td>
</tr>
<tr>
<td>\</td>
<td>Animate</td>
<td>A circular cursor traces the leading edge of the graph without drawing a path</td>
</tr>
<tr>
<td>\</td>
<td>Dot</td>
<td>A small dot represents each plotted point; this is the default in Dot mode</td>
</tr>
</tbody>
</table>

Note: Some graph styles are not available in all graphing modes. Chapters 4, 5, and 6 list the styles for Par, Pol, and Seq modes.

Setting the Graph Style

To set the graph style for a function, follow these steps.

1. Press Y= to display the Y= editor.
2. Press ▼ and ▼ to move the cursor to the function.
3. Press ▼ ▼ to move the cursor left, past the = sign, to the graph style icon in the first column. The insert cursor is displayed. (Steps 2 and 3 are interchangeable.)
4. Press ENTER repeatedly to rotate through the graph styles. The seven styles rotate in the same order in which they are listed in the table above.
5. Press ▼, ▼, or ▼ when you have selected a style.
Shading Above and Below

When you select $\underline{\text{¶}}$ or $\underline{\text{¶}}$ for two or more functions, the TI-84 Plus rotates through four shading patterns.

- Vertical lines shade the first function with a $\underline{\text{¶}}$ or $\underline{\text{¶}}$ graph style.
- Horizontal lines shade the second.
- Negatively sloping diagonal lines shade the third.
- Positively sloping diagonal lines shade the fourth.
- The rotation returns to vertical lines for the fifth $\underline{\text{¶}}$ or $\underline{\text{¶}}$ function, repeating the order described above.

When shaded areas intersect, the patterns overlap.

Note: When $\underline{\text{¶}}$ or $\underline{\text{¶}}$ is selected for a Y= function that graphs a family of curves, such as $Y_1=\{1,2,3\}X$, the four shading patterns rotate for each member of the family of curves.

Setting a Graph Style from a Program

To set the graph style from a program, select :H:GraphStyle(from the PRGM CTL menu. To display this menu, press PRGM while in the program editor. $function#$ is the number of the Y= function name in the current graphing mode. $graphstyle#$ is an integer from 1 to 7 that corresponds to the graph style, as shown below.

1 = (line) 5 = (path)
2 = (thick) 6 = \text{(animate)}
3 = (above) 7 = . (dot)
4 = (below)

GraphStyle($function#$,$graphstyle#$)

For example, when this program is executed in Func mode, GraphStyle(1,3) sets Y1 to $\underline{\text{¶}}$ (above).
Setting the Viewing Window Variables

The TI-84 Plus Viewing Window

The viewing window is the portion of the coordinate plane defined by X_{min}, X_{max}, Y_{min}, and Y_{max}. X_{scl} (X scale) defines the distance between tick marks on the x-axis. Y_{scl} (Y scale) defines the distance between tick marks on the y-axis. To turn off tick marks, set $X_{\text{scl}}=0$ and $Y_{\text{scl}}=0$.

Displaying the Window Variables

To display the current window variable values, press WINDOW. The window editor above and to the right shows the default values in Func graphing mode and Radian angle mode. The window variables differ from one graphing mode to another.

x_{res} sets pixel resolution (1 through 8) for function graphs only. The default is 1.

- At $x_{\text{res}}=1$, functions are evaluated and graphed at each pixel on the x-axis.
- At $x_{\text{res}}=8$, functions are evaluated and graphed at every eighth pixel along the x-axis.

Note: Small x_{res} values improve graph resolution but may cause the TI-84 Plus to draw graphs more slowly.

Changing a Window Variable Value

To change a window variable value from the window editor, follow these steps.

1. Press \uparrow or \downarrow to move the cursor to the window variable you want to change.
2. Edit the value, which can be an expression.
 - Enter a new value, which clears the original value.
 - Move the cursor to a specific digit, and then edit it.
3. Press ENTER, \uparrow, or \downarrow. If you entered an expression, the TI-84 Plus evaluates it. The new value is stored.

Note: $X_{\text{min}}<X_{\text{max}}$ and $Y_{\text{min}}<Y_{\text{max}}$ must be true in order to graph.

Storing to a Window Variable from the Home Screen or a Program

To store a value, which can be an expression, to a window variable, begin on a blank line and follow these steps.
1. Enter the value you want to store.
2. Press \texttt{STO}.
3. Press \texttt{VARS} to display the VARS menu.
4. Select \texttt{1:Window} to display the Func window variables (X/Y secondary menu).
 - Press \texttt{\leftarrow} to display the Par and Pol window variables (T/θ secondary menu).
 - Press \texttt{\rightarrow \rightarrow} to display the Seq window variables (U/V/W secondary menu).
5. Select the window variable to which you want to store a value. The name of the variable is pasted to the current cursor location.
6. Press \texttt{ENTER} to complete the instruction.

When the instruction is executed, the TI-84 Plus stores the value to the window variable and displays the value.

\[
\begin{array}{c}
\Delta X = \frac{(X_{\text{max}} - X_{\text{min}})}{94} \\
\Delta Y = \frac{(Y_{\text{max}} - Y_{\text{min}})}{62}
\end{array}
\]

\textbf{\(\Delta X\) and \(\Delta Y\)}

The variables \(\Delta X\) and \(\Delta Y\) (items 8 and 9 on the VARS (1:Window) X/Y secondary menu; \(\Delta X\) is also on the Window screen) define the distance from the center of one pixel to the center of any adjacent pixel on a graph (graphing accuracy). \(\Delta X\) and \(\Delta Y\) are calculated from \(X_{\text{min}}, X_{\text{max}}, Y_{\text{min}},\) and \(Y_{\text{max}}\) when you display a graph.

\[
\begin{array}{c}
\Delta X = \frac{(X_{\text{max}} - X_{\text{min}})}{94} \\
\Delta Y = \frac{(Y_{\text{max}} - Y_{\text{min}})}{62}
\end{array}
\]

You can store values to \(\Delta X\) and \(\Delta Y\). If you do, \(X_{\text{max}}\) and \(Y_{\text{max}}\) are calculated from \(\Delta X, X_{\text{min}}, \Delta Y,\) and \(Y_{\text{min}}\).

\textbf{Note:} The ZFrac ZOOM settings (Zfrac1/2, ZFrac1/3, ZFrac1/4, ZFrac1/5, ZFrac1/8, ZFrac1/10) change \(\Delta X\) and \(\Delta Y\) to fractional values. If fractions are not needed for your problem, you can adjust \(\Delta X\) and \(\Delta Y\) to suit your needs.

\textbf{Setting the Graph Format}

\textbf{Displaying the Format Settings}

To display the format settings, press \texttt{2nd [FORMAT]}. The default settings are highlighted below.

\textbf{Note:} You can also go to the Format Graph screen from the Mode screen by selecting YES at the GoTo Format Graph prompt. After you make changes, press \texttt{MODE} to return to the Mode screen.

\begin{tabular}{lll}
\texttt{RectGC} & \texttt{PolarGC} & \texttt{Sets cursor coordinates.} \\
\texttt{CoordOn} & \texttt{CoordOff} & \texttt{Sets coordinates display on or off.} \\
\texttt{GridOff} & \texttt{GridOn} & \texttt{Sets grid off or on.}
\end{tabular}
Format settings define a graph’s appearance on the display. Format settings apply to all graphing modes. Seq graphing mode has an additional mode setting (Chapter 6).

Changing a Format Setting

To change a format setting, follow these steps.

1. Press †, ~, } as necessary to move the cursor to the setting you want to select.
2. Press Í to select the highlighted setting.

RectGC, PolarGC

RectGC (rectangular graphing coordinates) displays the cursor location as rectangular coordinates X and Y.

PolarGC (polar graphing coordinates) displays the cursor location as polar coordinates R and θ.

The **RectGC/PolarGC** setting determines which variables are updated when you plot the graph, move the free-moving cursor, or trace.

- **RectGC** updates X and Y; if CoordOn format is selected, X and Y are displayed.
- **PolarGC** updates X, Y, R, and θ; if CoordOn format is selected, R and θ are displayed.

CoordOn, CoordOff

CoordOn (coordinates on) displays the cursor coordinates at the bottom of the graph. If ExprOff format is selected, the function number is displayed in the top-right corner.

CoordOff (coordinates off) does not display the function number or coordinates.

GridOff, GridOn

Grid points cover the viewing window in rows that correspond to the tick marks on each axis.

GridOff does not display grid points.

GridOn displays grid points.

AxesOn, AxesOff

AxesOn displays the axes.
AxesOff does not display the axes.

This overrides the LabelOff/LabelOn format setting.

LabelOff, LabelOn

LabelOff and LabelOn determine whether to display labels for the axes (X and Y), if AxesOn format is also selected.

ExprOn, ExprOff

ExprOn and ExprOff determine whether to display the Y= expression when the trace cursor is active. This format setting also applies to stat plots.

When ExprOn is selected, the expression is displayed in the top-left corner of the graph screen.

When ExprOff and CoordOn both are selected, the number in the top-right corner specifies which function is being traced.

Displaying Graphs

Displaying a New Graph

To display the graph of the selected function or functions, press GRAPH. TRACE, ZOOM instructions, and CALC operations display the graph automatically. As the TI-84 Plus plots the graph, the busy indicator is on. As the graph is plotted, X and Y are updated.

Pausing or Stopping a Graph

While plotting a graph, you can pause or stop graphing.

- Press [ENTER] to pause; then press [ENTER] to resume.
- Press [ON] to stop; then press [GRAPH] to redraw.

Smart Graph

Smart Graph is a TI-84 Plus feature that redisplays the last graph immediately when you press GRAPH, but only if all graphing factors that would cause replotting have remained the same since the graph was last displayed.

If you performed any of the following actions since the graph was last displayed, the TI-84 Plus will replot the graph based on new values when you press GRAPH.

- Changed a mode setting that affects graphs
- Changed a function in the current picture
- Selected or deselected a function or stat plot
- Changed the value of a variable in a selected function
- Changed a window variable or graph format setting
- Cleared drawings by selecting \texttt{ClrDraw}
- Changed a stat plot definition

\textbf{Overlaying Functions on a Graph}

On the TI-84 Plus, you can graph one or more new functions without replotting existing functions. For example, store \(\sin(X) \) to \(Y_1 \) in the \(Y= \) editor and press \texttt{GRAPH}. Then store \(\cos(X) \) to \(Y_2 \) and press \texttt{GRAPH} again. The function \(Y_2 \) is graphed on top of \(Y_1 \), the original function.

\textbf{Graphing a Family of Curves}

If you enter a list (Chapter 11) as an element in an expression, the TI-84 Plus plots the function for each value in the list, thereby graphing a family of curves. In Simul graphing-order mode, it graphs all functions sequentially for the first element in each list, and then for the second, and so on.

\(\{2,4,6\}\sin(X) \) graphs three functions: \(2 \sin(X) \), \(4 \sin(X) \), and \(6 \sin(X) \).

\(\{2,4,6\}\sin\{1,2,3\}X \) graphs \(2 \sin(X) \), \(4 \sin(2X) \), and \(6 \sin(3X) \).

\textbf{Note}: When using more than one list, the lists must have the same dimensions.
Exploring Graphs with the Free-Moving Cursor

Free-Moving Cursor

When a graph is displayed, press \(\downarrow, \uparrow, \leftarrow, \) or \(\rightarrow \) to move the cursor around the graph. When you first display the graph, no cursor is visible. When you press \(\downarrow, \uparrow, \leftarrow, \) or \(\rightarrow \), the cursor moves from the center of the viewing window.

As you move the cursor around the graph, the coordinate values of the cursor location are displayed at the bottom of the screen if CoordOn format is selected. The Float/Fix decimal mode setting determines the number of decimal digits displayed for the coordinate values.

To display the graph with no cursor and no coordinate values, press CLEAR or ENTER. When you press \(\downarrow, \uparrow, \leftarrow, \) or \(\rightarrow \), the cursor moves from the same position.

Graphing Accuracy

The free-moving cursor moves from pixel to pixel on the screen. When you move the cursor to a pixel that appears to be on the function, the cursor may be near, but not actually on, the function. The coordinate value displayed at the bottom of the screen actually may not be a point on the function. To move the cursor along a function, use TRACE.

The coordinate values displayed as you move the cursor approximate actual math coordinates, accurate to within the width and height of the pixel. As Xmin, Xmax, Ymin, and Ymax get closer together (as in a Zoom In) graphing accuracy increases, and the coordinate values more closely approximate the math coordinates.

Exploring Graphs with TRACE

Beginning a Trace

Use TRACE to move the cursor from one plotted point to the next along a function. To begin a trace, press TRACE. If the graph is not displayed already, press TRACE to display it. The trace cursor is on the first selected function in the Y= editor, at the middle X value on the screen. The cursor coordinates are displayed at the bottom of the screen if CoordOn format is selected. The Y= expression is displayed in the top-left corner of the screen, if ExprOn format is selected.
Moving the Trace Cursor

<table>
<thead>
<tr>
<th>To move the TRACE cursor</th>
<th>do this:</th>
</tr>
</thead>
<tbody>
<tr>
<td>To the previous or next plotted point,</td>
<td>press [or].</td>
</tr>
<tr>
<td>Five plotted points on a function (Xres affects this),</td>
<td>press 2nd [or 2nd].</td>
</tr>
<tr>
<td>To any valid X value on a function,</td>
<td>enter a value, and then press [ENTER].</td>
</tr>
<tr>
<td>From one function to another,</td>
<td>press [or].</td>
</tr>
</tbody>
</table>

When the trace cursor moves along a function, the Y value is calculated from the X value; that is, \(Y=Y_n(X) \). If the function is undefined at an X value, the Y value is blank.

![Trace cursor on the curve](image)

If you move the trace cursor beyond the top or bottom of the screen, the coordinate values at the bottom of the screen continue to change appropriately.

Moving the Trace Cursor from Function to Function

To move the trace cursor from function to function, press [and {]. The cursor follows the order of the selected functions in the Y= editor. The trace cursor moves to each function at the same X value. If ExprOn format is selected, the expression is updated.

Moving the Trace Cursor to Any Valid X Value

To move the trace cursor to any valid X value on the current function, enter the value. When you enter the first digit, an \(X= \) prompt and the number you entered are displayed in the bottom-left corner of the screen. You can enter an expression at the \(X= \) prompt. The value must be valid for the current viewing window. When you have completed the entry, press [ENTER] to move the cursor.

![Trace cursor on the curve](image)

Note: This feature does not apply to stat plots.
Panning to the Left or Right

If you trace a function beyond the left or right side of the screen, the viewing window automatically pans to the left or right. \(X_{\text{min}} \) and \(X_{\text{max}} \) are updated to correspond to the new viewing window.

Quick Zoom

While tracing, you can press \[\text{ENTER} \] to adjust the viewing window so that the cursor location becomes the center of the new viewing window, even if the cursor is above or below the display. This allows panning up and down. After Quick Zoom, the cursor remains in TRACE.

Leaving and Returning to TRACE

When you leave and return to TRACE, the trace cursor is displayed in the same location it was in when you left TRACE, unless Smart Graph has replotted the graph.

Using TRACE in a Program

On a blank line in the program editor, press \[\text{TRACE} \]. The instruction \text{Trace} is pasted to the cursor location. When the instruction is encountered during program execution, the graph is displayed with the trace cursor on the first selected function. As you trace, the cursor coordinate values are updated. When you finish tracing the functions, press \[\text{ENTER} \] to resume program execution.

Exploring Graphs with the ZOOM Instructions

ZOOM Menu

To display the ZOOM menu, press \[\text{ZOOM} \]. You can adjust the viewing window of the graph quickly in several ways. All ZOOM instructions are accessible from programs.

<table>
<thead>
<tr>
<th>ZOOM MEMORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: ZBox</td>
</tr>
<tr>
<td>2: Zoom In</td>
</tr>
<tr>
<td>3: Zoom Out</td>
</tr>
<tr>
<td>4: ZDecimal</td>
</tr>
<tr>
<td>5: ZSquare</td>
</tr>
<tr>
<td>6: ZStandard</td>
</tr>
<tr>
<td>7: ZTrig</td>
</tr>
<tr>
<td>8: ZInteger</td>
</tr>
<tr>
<td>9: ZoomStat</td>
</tr>
<tr>
<td>0: ZoomFit</td>
</tr>
<tr>
<td>A: ZQuadrant1</td>
</tr>
</tbody>
</table>
Sets the window variables so that you can trace in increments of \(\frac{1}{2} \), if possible. Sets \(\Delta X \) and \(\Delta Y \) to \(\frac{1}{2} \).

Sets the window variables so that you can trace in increments of \(\frac{1}{3} \), if possible. Sets \(\Delta X \) and \(\Delta Y \) to \(\frac{1}{3} \).

Sets the window variables so that you can trace in increments of \(\frac{1}{4} \), if possible. Sets \(\Delta X \) and \(\Delta Y \) to \(\frac{1}{4} \).

Sets the window variables so that you can trace in increments of \(\frac{1}{5} \), if possible. Sets \(\Delta X \) and \(\Delta Y \) to \(\frac{1}{5} \).

Sets the window variables so that you can trace in increments of \(\frac{1}{6} \), if possible. Sets \(\Delta X \) and \(\Delta Y \) to \(\frac{1}{6} \).

Sets the window variables so that you can trace in increments of \(\frac{1}{8} \), if possible. Sets \(\Delta X \) and \(\Delta Y \) to \(\frac{1}{8} \).

Sets the window variables so that you can trace in increments of \(\frac{1}{10} \), if possible. Sets \(\Delta X \) and \(\Delta Y \) to \(\frac{1}{10} \).

Note: You can adjust all window variables from the \textit{VARS} menu by pressing \textit{VARS} 1:Window and then selecting the variable from the \textit{X/Y}, \textit{T/\theta}, or \textit{U/V/W} menu.

Zoom Cursor

When you select 1:ZBox, 2:Zoom In, or 3:Zoom Out, the cursor on the graph becomes the zoom cursor (+), a smaller version of the free-moving cursor (•).

ZBox

To define a new viewing window using ZBox, follow these steps.

1. Select 1:ZBox from the ZOOM menu. The zoom cursor is displayed at the center of the screen.
2. Move the zoom cursor to any spot you want to define as a corner of the box, and then press \textit{ENTER}. When you move the cursor away from the first defined corner, a small, square dot indicates the spot.
3. Press \(\downarrow \), \(\uparrow \), \(\leftarrow \), or \(\rightarrow \). As you move the cursor, the sides of the box lengthen or shorten proportionately on the screen.
 \textbf{Note:} To cancel ZBox before you press \textit{ENTER}, press \textit{CLEAR}.
4. When you have defined the box, press \textit{ENTER} to replot the graph.
To use ZBox to define another box within the new graph, repeat steps 2 through 4. To cancel ZBox, press CLEAR.

Zoom In, Zoom Out

Zoom In magnifies the part of the graph that surrounds the cursor location. Zoom Out displays a greater portion of the graph, centered on the cursor location. The XFact and YFact settings determine the extent of the zoom.

To zoom in on a graph, follow these steps.

1. Check XFact and YFact; change as needed.
2. Select 2:Zoom In from the ZOOM menu. The zoom cursor is displayed.
3. Move the zoom cursor to the point that is to be the center of the new viewing window.
4. Press \(\text{ENTER} \). The TI-83 Plus adjusts the viewing window by XFact and YFact; updates the window variables; and replots the selected functions, centered on the cursor location.
5. Zoom in on the graph again in either of two ways.
 - To zoom in at the same point, press \(\text{ENTER} \).
 - To zoom in at a new point, move the cursor to the point that you want as the center of the new viewing window, and then press \(\text{ENTER} \).

To zoom out on a graph, select 3:Zoom Out and repeat steps 3 through 5.

To cancel Zoom In or Zoom Out, press CLEAR.

ZDecimal

ZDecimal replots the functions immediately. It updates the window variables to preset values, as shown below. These values set \(\Delta X \) and \(\Delta Y \) equal to 0.1 and set the X and Y value of each pixel to one decimal place.

\[
\begin{align*}
X_{\text{min}} &= -4.7 & Y_{\text{min}} &= -3.1 \\
X_{\text{max}} &= 4.7 & Y_{\text{max}} &= 3.1 \\
X_{\text{scl}} &= 1 & Y_{\text{scl}} &= 1
\end{align*}
\]

ZSquare

ZSquare replots the functions immediately. It redefines the viewing window based on the current values of the window variables. It adjusts in only one direction so that \(\Delta X = \Delta Y \), which makes the graph of a circle look like a circle. Xscl and Yscl remain unchanged. The midpoint of the current graph (not the intersection of the axes) becomes the midpoint of the new graph.
ZStandard

ZStandard replots the functions immediately. It updates the window variables to the standard values shown below.

\[
\begin{align*}
X_{\text{min}} &= -10 & Y_{\text{min}} &= -10 & X_{\text{res}} &= 1 \\
X_{\text{max}} &= 10 & Y_{\text{max}} &= 10 \\
X_{\text{scl}} &= 1 & Y_{\text{scl}} &= 1
\end{align*}
\]

ZTrig

ZTrig replots the functions immediately. It updates the window variables to preset values that are appropriate for plotting trig functions. Those preset values in Radian mode are shown below.

\[
\begin{align*}
X_{\text{min}} &= -(47/24)\pi \text{ (decimal equivalent)} & Y_{\text{min}} &= -4 \\
X_{\text{max}} &= (47/24)\pi \text{ (decimal equivalent)} & Y_{\text{max}} &= 4 \\
X_{\text{scl}} &= \pi/2 \text{ (decimal equivalent)} & Y_{\text{scl}} &= 1
\end{align*}
\]

ZInteger

ZInteger redefines the viewing window to the dimensions shown below. To use ZInteger, move the cursor to the point that you want to be the center of the new window, and then press [ENTER]; ZInteger replots the functions.

\[
\begin{align*}
\Delta X &= 1 & X_{\text{scl}} &= 10 \\
\Delta Y &= 1 & Y_{\text{scl}} &= 10
\end{align*}
\]

ZoomStat

ZoomStat redefines the viewing window so that all statistical data points are displayed. For regular and modified box plots, only Xmin and Xmax are adjusted.

ZoomFit

ZoomFit replots the functions immediately. ZoomFit recalculates YMin and YMax to include the minimum and maximum Y values of the selected functions between the current XMin and XMax. XMin and XMax are not changed.

ZQuadrant1

ZQuadrant1 replots the function immediately. It redefines the window settings so that only quadrant 1 is displayed.
ZFrac1/2

ZFrac1/2 replots the functions immediately. It updates the window variables to preset values, as shown below. These values set ΔX and ΔY equal to 1/2 and set the X and Y value of each pixel to one decimal place.

\[
\begin{align*}
X_{\text{min}} &= &-47/2 & \quad & Y_{\text{min}} &= &-31/2 \\
X_{\text{max}} &= &47/2 & \quad & Y_{\text{max}} &= &31/2 \\
X_{\text{scl}} &= &1 & \quad & Y_{\text{scl}} &= &1
\end{align*}
\]

ZFrac1/3

ZFrac1/3 replots the functions immediately. It updates the window variables to preset values, as shown below. These values set ΔX and ΔY equal to 1/3 and set the X and Y value of each pixel to one decimal place.

\[
\begin{align*}
X_{\text{min}} &= &-47/3 & \quad & Y_{\text{min}} &= &-31/3 \\
X_{\text{max}} &= &47/3 & \quad & Y_{\text{max}} &= &31/3 \\
X_{\text{scl}} &= &1 & \quad & Y_{\text{scl}} &= &1
\end{align*}
\]

ZFrac1/4

ZFrac1/4 replots the functions immediately. It updates the window variables to preset values, as shown below. These values set ΔX and ΔY equal to 1/4 and set the X and Y value of each pixel to one decimal place.

\[
\begin{align*}
X_{\text{min}} &= &-47/4 & \quad & Y_{\text{min}} &= &-31/4 \\
X_{\text{max}} &= &47/4 & \quad & Y_{\text{max}} &= &31/4 \\
X_{\text{scl}} &= &1 & \quad & Y_{\text{scl}} &= &1
\end{align*}
\]

ZFrac1/5

ZFrac1/5 replots the functions immediately. It updates the window variables to preset values, as shown below. These values set ΔX and ΔY equal to 1/5 and set the X and Y value of each pixel to one decimal place.

\[
\begin{align*}
X_{\text{min}} &= &-47/5 & \quad & Y_{\text{min}} &= &-31/5 \\
X_{\text{max}} &= &47/5 & \quad & Y_{\text{max}} &= &31/5 \\
X_{\text{scl}} &= &1 & \quad & Y_{\text{scl}} &= &1
\end{align*}
\]
Chapter 3: Function Graphing

ZFrac1/8

ZFrac1/8 replots the functions immediately. It updates the window variables to preset values, as shown below. These values set \(\Delta X \) and \(\Delta Y \) equal to 1/8 and set the X and Y value of each pixel to one decimal place.

\[
\begin{align*}
X_{\text{min}} &= -47/8 \\
X_{\text{max}} &= 47/8 \\
X_{\text{scl}} &= 1 \\
Y_{\text{min}} &= -31/8 \\
Y_{\text{max}} &= 31/8 \\
Y_{\text{scl}} &= 1
\end{align*}
\]

ZFrac1/10

ZFrac1/10 replots the functions immediately. It updates the window variables to preset values, as shown below. These values set \(\Delta X \) and \(\Delta Y \) equal to 1/10 and set the X and Y value of each pixel to one decimal place.

\[
\begin{align*}
X_{\text{min}} &= -47/10 \\
X_{\text{max}} &= 47/10 \\
X_{\text{scl}} &= 1 \\
Y_{\text{min}} &= -31/10 \\
Y_{\text{max}} &= 31/10 \\
Y_{\text{scl}} &= 1
\end{align*}
\]

Using ZOOM MEMORY

ZOOM MEMORY Menu

To display the ZOOM MEMORY menu, press \([\text{ZOOM}] [X]\).

<table>
<thead>
<tr>
<th>ZOOM MEMORY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: ZPrevious</td>
<td>Uses the previous viewing window.</td>
</tr>
<tr>
<td>2: ZoomSto</td>
<td>Stores the user-defined window.</td>
</tr>
<tr>
<td>3: ZoomRcl</td>
<td>Recalls the user-defined window.</td>
</tr>
<tr>
<td>4: SetFactors...</td>
<td>Changes Zoom In and Zoom Out factors.</td>
</tr>
</tbody>
</table>

ZPrevious

ZPrevious replots the graph using the window variables of the graph that was displayed before you executed the last ZOOM instruction.

ZoomSto

ZoomSto immediately stores the current viewing window. The graph is displayed, and the values of the current window variables are stored in the user-defined ZOOM variables \(ZX_{\text{min}}, ZX_{\text{max}}, ZX_{\text{scl}}, ZY_{\text{min}}, ZY_{\text{max}}, ZY_{\text{scl}}, \) and \(ZX_{\text{res}}. \)

These variables apply to all graphing modes. For example, changing the value of \(ZX_{\text{min}} \) in Func mode also changes it in Par mode.
ZoomRcl

ZoomRcl graphs the selected functions in a user-defined viewing window. The user-defined viewing window is determined by the values stored with the ZoomSto instruction. The window variables are updated with the user-defined values, and the graph is plotted.

ZOOM FACTORS

The zoom factors, XFact and YFact, are positive numbers (not necessarily integers) greater than or equal to 1. They define the magnification or reduction factor used to Zoom In or Zoom Out around a point.

Checking XFact and YFact

To display the ZOOM FACTORS screen, where you can review the current values for XFact and YFact, select 4:SetFactors from the ZOOM MEMORY menu. The values shown are the defaults.

Changing XFact and YFact

You can change XFact and YFact in either of two ways.

• Enter a new value. The original value is cleared automatically when you enter the first digit.
• Place the cursor on the digit you want to change, and then enter a value or press DEL to delete it.

Using ZOOM MEMORY Menu Items from the Home Screen or a Program

From the home screen or a program, you can store directly to any of the user-defined ZOOM variables.

From a program, you can select the ZoomSto and ZoomRcl instructions from the ZOOM MEMORY menu.
Using the CALC (Calculate) Operations

CALCULATE Menu

To display the CALCULATE menu, press \textit{2nd} [CALC]. Use the items on this menu to analyze the current graph functions.

<table>
<thead>
<tr>
<th>CALCULATE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: value</td>
<td>Calculates a function Y value for a given X.</td>
</tr>
<tr>
<td>2: zero</td>
<td>Finds a zero (x-intercept) of a function.</td>
</tr>
<tr>
<td>3: minimum</td>
<td>Finds a minimum of a function.</td>
</tr>
<tr>
<td>4: maximum</td>
<td>Finds a maximum of a function.</td>
</tr>
<tr>
<td>5: intersect</td>
<td>Finds an intersection of two functions.</td>
</tr>
<tr>
<td>6: dy/dx</td>
<td>Finds a numeric derivative of a function.</td>
</tr>
<tr>
<td>7: (\int f(x) , dx)</td>
<td>Finds a numeric integral of a function.</td>
</tr>
</tbody>
</table>

value

\textit{value} evaluates one or more currently selected functions for a specified value of X.

Note: When a value is displayed for X, press \texttt{CLEAR} to clear the value. When no value is displayed, press \texttt{CLEAR} to cancel the \textit{value} operation.

To evaluate a selected function at X, follow these steps.

1. Select 1:value from the CALCULATE menu. The graph is displayed with X= in the bottom-left corner.
2. Enter a real value, which can be an expression, for X between Xmin and Xmax.
3. Press \texttt{ENTER}.

![Graph showing value evaluation](image)

The cursor is on the first selected function in the Y= editor at the X value you entered, and the coordinates are displayed, even if \texttt{CoordOff} format is selected.

To move the cursor from function to function at the entered X value, press \(\uparrow\) or \(\downarrow\). To restore the free-moving cursor, press \(\boldsymbol{\uparrow}\) or \(\boldsymbol{\downarrow}\).
zero finds a zero (x-intercept or root) of a function using solve. Functions can have more than one x-intercept value; zero finds the zero closest to your guess.

The time zero spends to find the correct zero value depends on the accuracy of the values you specify for the left and right bounds and the accuracy of your guess.

To find a zero of a function, follow these steps.

1. Select 2:zero from the CALCULATE menu. The current graph is displayed with Left Bound? in the bottom-left corner.
2. Press } or † to move the cursor onto the function for which you want to find a zero.
3. Press | or ~ (or enter a value) to select the x-value for the left bound of the interval, and then press ENTER. A ▶ indicator on the graph screen shows the left bound. Right Bound? is displayed in the bottom-left corner. Press | or ~ (or enter a value) to select the x-value for the right bound, and then press ENTER. A ◀ indicator on the graph screen shows the right bound. Guess? is then displayed in the bottom-left corner.
4. Press | or ~ (or enter a value) to select a point near the zero of the function, between the bounds, and then press ENTER.

The cursor is on the solution and the coordinates are displayed, even if CoordOff format is selected. To move to the same x-value for other selected functions, press } or †. To restore the free-moving cursor, press | or ~.

minimum, maximum

minimum and maximum find a minimum or maximum of a function within a specified interval to a tolerance of 1E-5.

To find a minimum or maximum, follow these steps.

1. Select 3:minimum or 4:maximum from the CALCULATE menu. The current graph is displayed.
2. Select the function and set left bound, right bound, and guess as described for zero.
The cursor is on the solution, and the coordinates are displayed, even if you have selected CoordOff format; Minimum or Maximum is displayed in the bottom-left corner.

To move to the same x-value for other selected functions, press ▲ or ▼. To restore the free-moving cursor, press ▷ or ◄.

intersect

intersect finds the coordinates of a point at which two or more functions intersect using solve(. The intersection must appear on the display to use intersect.

To find an intersection, follow these steps.

1. Select 5:intersect from the CALCULATE menu. The current graph is displayed with First curve? in the bottom-left corner.

2. Press ▲ or ▼, if necessary, to move the cursor to the first function, and then press ENTER. Second curve? is displayed in the bottom-left corner.

3. Press ▲ or ▼, if necessary, to move the cursor to the second function, and then press ENTER.

4. Press ▷ or ◄ to move the cursor to the point that is your guess as to location of the intersection, and then press ENTER.

The cursor is on the solution and the coordinates are displayed, even if CoordOff format is selected. Intersection is displayed in the bottom-left corner. To restore the free-moving cursor, press ▷, ◄, ▾ or ▶.

dy/dx

dy/dx (numerical derivative) finds the numerical derivative (slope) of a function at a point, with \(\varepsilon=1\times10^{-3} \).

To find a function’s slope at a point, follow these steps.

1. Select 6:dy/dx from the CALCULATE menu. The current graph is displayed.

2. Press ▼ or ▲ to select the function for which you want to find the numerical derivative.

3. Press ▼ or ▲ (or enter a value) to select the X value at which to calculate the derivative, and then press ENTER.

The cursor is on the solution and the numerical derivative is displayed.

To move to the same x-value for other selected functions, press ▲ or ▼. To restore the free-moving cursor, press ▷ or ◄.
\(\int f(x) \, dx \)

\(\int f(x) \, dx \) (numerical integral) finds the numerical integral of a function in a specified interval. It uses the \texttt{fnInt(} function, with a tolerance of \(\varepsilon = 1 \times 10^{-3} \).

To find the numerical integral of a function, follow these steps.

1. Select 7: \(\int f(x) \, dx \) from the \textbf{CALCULATE} menu. The current graph is displayed with \textit{Lower Limit?} in the bottom-left corner.
2. Press \(\downarrow \) or \(\uparrow \) to move the cursor to the function for which you want to calculate the integral.
3. Set lower and upper limits as you would set left and right bounds for \texttt{zero}. The integral value is displayed, and the integrated area is shaded.

\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{integral_example.png}
\caption{Example of numerical integral calculation.}
\end{figure}

\textbf{Note:} The shaded area is a drawing. Use \texttt{ClrDraw} (Chapter 8) or any action that invokes Smart Graph to clear the shaded area.
Chapter 4: Parametric Graphing

Getting Started: Path of a Ball

Getting Started is a fast-paced introduction. Read the chapter for details.

Graph the parametric equation that describes the path of a ball hit at an initial speed of 30 meters per second, at an initial angle of 25 degrees with the horizontal from ground level. How far does the ball travel? When does it hit the ground? How high does it go? Ignore all forces except gravity.

For initial velocity v_0 and angle θ, the position of the ball as a function of time has horizontal and vertical components.

Horizontal: $X_1(t)=v_0\cos(\theta)$
Vertical: $Y_1(t)=v_0\sin(\theta)-\frac{1}{2}gt^2$

The vertical and horizontal vectors of the ball’s motion also will be graphed.

Vertical vector: $X_2(t)=0$
$Y_2(t)=Y_1(t)$
Horizontal vector: $X_3(t)=X_1(t)$
$Y_3(t)=0$

Gravity constant: $g=9.8\text{ m/sec}^2$

1. Press MODE. Press $\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow$ ENTER to select Par mode. Press $\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow$ ENTER to select Simul for simultaneous graphing of all three parametric equations in this example.

2. Press $\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow$ ENTER to go to the Format Graph screen. Press $\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow$ ENTER to select AxesOff, which turns off the axes.
3. Press \(\sqrt{\text{Y}} \). Press 30 \([X,T,\Theta,\phi] \cos 25 \) \([\text{2nd}][\text{ANGLE}] \) 1 (to select \(\phi \)) \(\text{ENTER} \) to define \(X_1T \) in terms of \(T \).

4. Press 30 \([X,T,\Theta,\phi] \sin 25 \) \([\text{2nd}][\text{ANGLE}] \) 1 \(\text{ALPHA} \) \([1] \) 1 (to select \(\phi/d \)) \(9.8 \) \(\text{ENTER} \) \([X,T,\Theta,\phi] \) \(\text{ENTER} \) to define \(Y_1T \).

The vertical component vector is defined by \(X_2T \) and \(Y_2T \).

5. Press 0 \(\text{ENTER} \) to define \(X_2T \).

6. Press \(\text{ALPHA}[4] \) \(\text{ENTER} \) \(\text{ENTER} \) to define \(Y_2T \).

The horizontal component vector is defined by \(X_3T \) and \(Y_3T \).

7. Press \(\text{ALPHA}[4] \) \(\text{ENTER} \) \(\text{ENTER} \) to define \(X_3T \).

8. Press 0 \(\text{ENTER} \) to define \(Y_3T \).

9. Press a a a \(\text{ENTER} \) to change the graph style to \(\backslash \) for \(X_3T \) and \(Y_3T \). Press a \(\text{ENTER} \) \(\text{ENTER} \) to change the graph style to \(\phi \) for \(X_2T \) and \(Y_2T \). Press a \(\text{ENTER} \) \(\text{ENTER} \) to change the graph style to \(\phi \) for \(X_1T \) and \(Y_1T \). (These keystrokes assume that all graph styles were set to \(\backslash \) originally.)

10. Press \(\text{WINDOW} \). Enter these values for the window variables.

\[
\begin{align*}
T_{\text{min}} &= 0 \\
X_{\text{min}} &= -10 \\
Y_{\text{min}} &= -5 \\
T_{\text{max}} &= 5 \\
X_{\text{max}} &= 100 \\
Y_{\text{max}} &= 15 \\
T_{\text{step}} &= 0.1 \\
X_{\text{scl}} &= 50 \\
Y_{\text{scl}} &= 10
\end{align*}
\]

\text{Note: You can check all \text{WINDOW} variables, including } \Delta X \text{ and } \Delta Y \text{ by pressing } \text{VARS} \ 1: \text{Window}. \\

11. Press \(\text{GRAPH} \). The plotting action simultaneously shows the ball in flight and the vertical and horizontal component vectors of the motion.

\text{Note: To simulate the ball flying through the air, set graph style to } \phi (\text{animate}) \text{ for } X_1T \text{ and } Y_1T. \]
12. Press **TRACE** to obtain numerical results and answer the questions at the beginning of this section.

Tracing begins at **Tmin** on the first parametric equation (\(X_1T\) and \(Y_1T\)). As you press **X** to trace the curve, the cursor follows the path of the ball over time. The values for \(X\) (distance), \(Y\) (height), and \(T\) (time) are displayed at the bottom of the screen.

Defining and Displaying Parametric Graphs

TI-84 Plus Graphing Mode Similarities

The steps for defining a parametric graph are similar to the steps for defining a function graph. Chapter 4 assumes that you are familiar with Chapter 3: Function Graphing. Chapter 4 details aspects of parametric graphing that differ from function graphing.

Setting Parametric Graphing Mode

To display the mode screen, press **MODE**. To graph parametric equations, you must select parametric graphing mode before you enter window variables and before you enter the components of parametric equations.

Displaying the Parametric Y= Editor

After selecting parametric graphing mode, press **Y=** to display the parametric Y= editor.

In this editor, you can display and enter both the \(X\) and \(Y\) components of up to six equations, \(X_1T\) and \(Y_1T\) through \(X_6T\) and \(Y_6T\). Each is defined in terms of the independent variable \(T\). A common application of parametric graphs is graphing equations over time.

Selecting a Graph Style

The icons to the left of \(X_1T\) through \(X_6T\) represent the graph style of each parametric equation. The default in parametric mode is \(\backslash\) (line), which connects plotted points. Line, \(\backslash\) (thick), \(\bullet\) (path), \(\circ\) (animate), and \(\cdot\) (dot) styles are available for parametric graphing.
Defining and Editing Parametric Equations

To define or edit a parametric equation, follow the steps in Chapter 3 for defining a function or editing a function. The independent variable in a parametric equation is T. In parametric graphing mode, you can enter the parametric variable T in either of two ways.

- Press \(X.T.\theta.n \).
- Press \[\text{ALPHA}[T] \].

Two components, X and Y, define a single parametric equation. You must define both of them.

Selecting and Deselecting Parametric Equations

The TI-84 Plus graphs only the selected parametric equations. In the Y= editor, a parametric equation is selected when the \(= \) signs of both the X and Y components are highlighted. You may select any or all of the equations \(\text{X}1T \) and \(\text{Y}1T \) through \(\text{X}6T \) and \(\text{Y}6T \).

To change the selection status, move the cursor onto the \(= \) sign of either the X or Y component and press \[\text{ENTER} \]. The status of both the X and Y components is changed.

Setting Window Variables

To display the window variable values, press \[\text{WINDOW} \]. These variables define the viewing window. The values below are defaults for parametric graphing in Radian angle mode.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tmin=0</td>
<td>Smallest T value to evaluate</td>
</tr>
<tr>
<td>Tmax=6.2831853</td>
<td>Largest T value to evaluate (2(\pi))</td>
</tr>
<tr>
<td>Tstep=.1308996</td>
<td>T value increment ((\pi/24))</td>
</tr>
<tr>
<td>Xmin=-10</td>
<td>Smallest X value to be displayed</td>
</tr>
<tr>
<td>Xmax=10</td>
<td>Largest X value to be displayed</td>
</tr>
<tr>
<td>Xscl=1</td>
<td>Spacing between the X tick marks</td>
</tr>
<tr>
<td>Ymin=-10</td>
<td>Smallest Y value to be displayed</td>
</tr>
<tr>
<td>Ymax=10</td>
<td>Largest Y value to be displayed</td>
</tr>
<tr>
<td>Yscl=1</td>
<td>Spacing between the Y tick marks</td>
</tr>
</tbody>
</table>

Note: To ensure that sufficient points are plotted, you may want to change the T window variables.

Setting the Graph Format

To display the current graph format settings, press \[\text{2nd}[\text{FORMAT}] \]. Chapter 3 describes the format settings in detail. The other graphing modes share these format settings; Seq graphing mode has an additional axes format setting.
Displaying a Graph

When you press **[GRAPH]**, the TI-84 Plus plots the selected parametric equations. It evaluates the X and Y components for each value of T (from T_{min} to T_{max} in intervals of T_{step}), and then plots each point defined by X and Y. The window variables define the viewing window.

As the graph is plotted, X, Y, and T are updated.

Smart Graph applies to parametric graphs.

Window Variables and Y-VARS Menus

You can perform these actions from the home screen or a program.

- Access functions by using the name of the X or Y component of the equation as a variable.

```plaintext
X₁ * .5 \n24.70916375
```

- Store parametric equations.

```plaintext
"sin(T)" * X₁ \n"cos(T)" * Y₁ \nDone
```

- Select or deselect parametric equations.

```plaintext
FnOff 1 \nDone
```

- Store values directly to window variables.

```plaintext
360 * T_{\text{max}} \n360
```

Exploring Parametric Graphs

Free-Moving Cursor

The free-moving cursor in parametric graphing works the same as in Func graphing.

In **RectGC** format, moving the cursor updates the values of X and Y; if **CoordOn** format is selected, X and Y are displayed.

In **PolarGC** format, X, Y, R, and θ are updated; if **CoordOn** format is selected, R and θ are displayed.
TRACE

To activate TRACE, press \[\text{TRACE}\]. When TRACE is active, you can move the trace cursor along the graph of the equation one \(\text{Tstep}\) at a time. When you begin a trace, the trace cursor is on the first selected function at \(\text{Tmin}\). If \(\text{ExprOn}\) is selected, then the function is displayed.

In \(\text{RectGC}\) format, TRACE updates and displays the values of \(X, Y,\) and \(T\) if \(\text{CoordOn}\) format is on.

In \(\text{PolarGC}\) format, \(X, Y, R, \theta\) and \(T\) are updated; if \(\text{CoordOn}\) format is selected, \(R, \theta,\) and \(T\) are displayed. The \(X\) and \(Y\) (or \(R\) and \(\theta\)) values are calculated from \(T\).

To move five plotted points at a time on a function, press \(\text{2nd} \times\) or \(\text{2nd} \cdot\). If you move the cursor beyond the top or bottom of the screen, the coordinate values at the bottom of the screen continue to change appropriately.

Quick Zoom is available in parametric graphing; panning is not.

Moving the Trace Cursor to Any Valid \(T\) Value

To move the trace cursor to any valid \(T\) value on the current function, enter the number. When you enter the first digit, a \(T=\) prompt and the number you entered are displayed in the bottom-left corner of the screen. You can enter an expression at the \(T=\) prompt. The value must be valid for the current viewing window. When you have completed the entry, press \(\text{ENTER}\) to move the cursor.

ZOOM

ZOOM operations in parametric graphing work the same as in Func graphing. Only the \(X\) \((\text{Xmin}, \text{Xmax},\) and \(\text{Xscl})\) and \(Y\) \((\text{Ymin}, \text{Ymax},\) and \(\text{Yscl})\) window variables are affected.

The \(T\) window variables \((\text{Tmin}, \text{Tmax},\) and \(\text{Tstep})\) are only affected when you select \(\text{ZStandard}\). The \(\text{VARS ZOOM}\) secondary menu \(\text{ZT/Z}\) items \(1:Z\text{Tmin}, 2:Z\text{Tmax},\) and \(3:Z\text{Tstep}\) are the zoom memory variables for parametric graphing.

CALC

CALC operations in parametric graphing work the same as in Func graphing. The \text{CALCULATE} menu items available in parametric graphing are \(1:\text{value}, 2:dy/dx, 3:dy/dt,\) and \(4:dx/dt.\)
Chapter 5: Polar Graphing

Getting Started: Polar Rose

Getting Started is a fast-paced introduction. Read the chapter for details.

The polar equation \(R = A \sin(B \theta) \) graphs a rose. Graph the rose for \(A = 8 \) and \(B = 2.5 \), and then explore the appearance of the rose for other values of \(A \) and \(B \).

1. Press \(Z \) to display the MODE screen. Press \(\downarrow \) \(\uparrow \) \(\downarrow \) ENTER to select Pol graphing mode. Select the defaults (the options on the left) for the other mode settings.

2. Press \(V \) to display the polar Y= editor. Press 8 \(\sin \) 2.5 \(\theta \) ENTER to define \(r_1 \).

3. Press ZOOM 6 to select 6:ZStandard and graph the equation in the standard viewing window. The graph shows only five petals of the rose, and the rose does not appear to be symmetrical. This is because the standard window sets \(\theta_{\text{max}} = 2\pi \) and defines the window, rather than the pixels, as square.

4. Press WINDOW to display the window variables. Press \(\downarrow \) 4 2nd \(\pi \) to increase the value of \(\theta_{\text{max}} \) to \(4\pi \).

5. Press ZOOM 5 to select 5:ZSquare and plot the graph.

6. Repeat steps 2 through 5 with new values for the variables \(A \) and \(B \) in the polar equation \(r_1 = A \sin(B \theta) \). Observe how the new values affect the graph.
Defining and Displaying Polar Graphs

TI-84 Plus Graphing Mode Similarities

The steps for defining a polar graph are similar to the steps for defining a function graph. Chapter 5 assumes that you are familiar with Chapter 3: Function Graphing. Chapter 5 details aspects of polar graphing that differ from function graphing.

Setting Polar Graphing Mode

To display the mode screen, press MODE. To graph polar equations, you must select Pol graphing mode before you enter values for the window variables and before you enter polar equations.

Displaying the Polar Y= Editor

After selecting Pol graphing mode, press Y= to display the polar Y= editor.

In this editor, you can enter and display up to six polar equations, r1 through r6. Each is defined in terms of the independent variable \(\theta \).

Selecting Graph Styles

The icons to the left of r1 through r6 represent the graph style of each polar equation. The default in Pol graphing mode is \(\line \) (line), which connects plotted points. Line, \(\thick \) (thick), \(\path \) (path), \(\animate \) (animate), and \(\dot \) (dot) styles are available for polar graphing.

Defining and Editing Polar Equations

To define or edit a polar equation, follow the steps in Chapter 3 for defining a function or editing a function. The independent variable in a polar equation is \(\theta \). In Pol graphing mode, you can enter the polar variable \(\theta \) in either of two ways.

- Press X,T,\(\theta \),n.
- Press ALPHA [\(\theta \)].

Selecting and Deselecting Polar Equations

The TI-84 Plus graphs only the selected polar equations. In the Y= editor, a polar equation is selected when the = sign is highlighted. You may select any or all of the equations.
To change the selection status, move the cursor onto the = sign, and then press [ENTER].

Setting Window Variables

To display the window variable values, press [WINDOW]. These variables define the viewing window. The values below are defaults for Pol graphing in Radian angle mode.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_{\text{min}})</td>
<td>0</td>
<td>Smallest (\theta) value to evaluate</td>
</tr>
<tr>
<td>(\theta_{\text{max}})</td>
<td>6.2831853...</td>
<td>Largest (\theta) value to evaluate (2(\pi))</td>
</tr>
<tr>
<td>(\theta_{\text{step}})</td>
<td>.1308996...</td>
<td>Increment between (\theta) values ((\pi/24))</td>
</tr>
<tr>
<td>(X_{\text{min}})</td>
<td>-10</td>
<td>Smallest X value to be displayed</td>
</tr>
<tr>
<td>(X_{\text{max}})</td>
<td>10</td>
<td>Largest X value to be displayed</td>
</tr>
<tr>
<td>(X_{\text{scl}})</td>
<td>1</td>
<td>Spacing between the X tick marks</td>
</tr>
<tr>
<td>(Y_{\text{min}})</td>
<td>-10</td>
<td>Smallest Y value to be displayed</td>
</tr>
<tr>
<td>(Y_{\text{max}})</td>
<td>10</td>
<td>Largest Y value to be displayed</td>
</tr>
<tr>
<td>(Y_{\text{scl}})</td>
<td>1</td>
<td>Spacing between the Y tick marks</td>
</tr>
</tbody>
</table>

Note: To ensure that sufficient points are plotted, you may want to change the \(\theta \) window variables.

Setting the Graph Format

To display the current graph format settings, press [2nd] [FORMAT]. Chapter 3 describes the format settings in detail. The other graphing modes share these format settings.

Displaying a Graph

When you press [GRAPH], the TI-84 Plus plots the selected polar equations. It evaluates \(R \) for each value of \(\theta \) (from \(\theta_{\text{min}} \) to \(\theta_{\text{max}} \) in intervals of \(\theta_{\text{step}} \)) and then plots each point. The window variables define the viewing window.

As the graph is plotted, X, Y, R, and \(\theta \) are updated.

Smart Graph applies to polar graphs.

Window Variables and Y-VARS Menus

You can perform these actions from the home screen or a program.

- Access functions by using the name of the equation as a variable. These function names are available on the YVARS shortcut menu (\[ALPHA\] [Y-VARS]).
• Store polar equations.

• Select or deselect polar equations.

• Store values directly to window variables.

Exploring Polar Graphs

Free-Moving Cursor

The free-moving cursor in Pol graphing works the same as in Func graphing. In RectGC format, moving the cursor updates the values of X and Y; if CoordOn format is selected, X and Y are displayed. In PolarGC format, X, Y, R, and \(\theta \) are updated; if CoordOn format is selected, R and \(\theta \) are displayed.

TRACE

To activate TRACE, press \(\text{TRACE} \). When TRACE is active, you can move the trace cursor along the graph of the equation one \(\theta \) step at a time. When you begin a trace, the trace cursor is on the first selected function at \(\theta \min \). If ExprOn format is selected, then the equation is displayed.

In RectGC format, TRACE updates the values of X, Y, and \(\theta \); if CoordOn format is selected, X, Y, and \(\theta \) are displayed. In PolarGC format, TRACE updates X, Y, R, and \(\theta \); if CoordOn format is selected, R and \(\theta \) are displayed.

To move five plotted points at a time on a function, press \(\boxed{2nd} \) [4] or \(\boxed{2nd} \) [8]. If you move the trace cursor beyond the top or bottom of the screen, the coordinate values at the bottom of the screen continue to change appropriately.

Quick Zoom is available in Pol graphing mode; panning is not.

Moving the Trace Cursor to Any Valid Theta Value

To move the trace cursor to any valid \(\theta \) value on the current function, enter the number. When you enter the first digit, a \(\theta = \) prompt and the number you entered are displayed in the bottom-left corner of the screen. You can enter an expression at the \(\theta = \) prompt. The value must be valid for the current viewing window. When you complete the entry, press \(\boxed{\text{ENTER}} \) to move the cursor.
ZOOM

ZOOM operations in Pol graphing work the same as in Func graphing. Only the X (X_{min}, X_{max}, and X_{scl}) and Y (Y_{min}, Y_{max}, and Y_{scl}) window variables are affected.

The θ window variables (θ_{min}, θ_{max}, and θ_{step}) are not affected, except when you select *ZStandard*. The VARS ZOOM secondary menu ZT/Z\theta items 4:Zθ_{min}, 5:Zθ_{max}, and 6:Zθ_{step} are zoom memory variables for Pol graphing.

CALC

CALC operations in Pol graphing work the same as in Func graphing. The *CALCULATE* menu items available in Pol graphing are 1:value, 2:dy/dx, and 3:dr/d\theta.
Chapter 6:
Sequence Graphing

Getting Started: Forest and Trees

Note: Getting Started is a fast-paced introduction. Read the chapter for details.

A small forest of 4,000 trees is under a new forestry plan. Each year 20 percent of the trees will be harvested and 1,000 new trees will be planted. Will the forest eventually disappear? Will the forest size stabilize? If so, in how many years and with how many trees?

1. Press [MODE]. Press [] 4 5 6 7 8 9 to select Seq graphing mode.

2. Press [2nd] [FORMAT] and select Time axes format and ExprOn format if necessary.

3. Press []. If the graph-style icon is not \ (dot), press [] [] , press [ENTER] until \ is displayed, and then press [] [].

4. Press [MATH] 3 to select iPart (integer part) because only whole trees are harvested. After each annual harvest, 80 percent (.80) of the trees remain.

 Press [8] [2nd] [u] \ 4 1 \ 1 to define the number of trees after each harvest. Press [+] 1000 \ 1 \ to define the new trees. Press [] 4000 to define the number of trees at the beginning of the program.

 Note: Be sure to press [2nd] [u], not [ALPHA] [U]. [u] is the second function of the \ key.

5. Press [WINDOW] 0 to set nMin=0. Press [] 50 to set nMax=50. nMin and nMax evaluate forest size over 50 years. Set the other window variables.

\[
\begin{align*}
\text{PlotStart}=1 & \quad \text{Xmin}=0 \quad \text{Ymin}=0 \\
\text{PlotStep}=1 & \quad \text{Xmax}=50 \quad \text{Ymax}=6000 \\
& \quad \text{Xscl}=10 \quad \text{Yscl}=1000
\end{align*}
\]
Defining and Displaying Sequence Graphs

TI-84 Plus Graphing Mode Similarities

The steps for defining a sequence graph are similar to the steps for defining a function graph. Chapter 6 assumes that you are familiar with Chapter 3: Function Graphing. Chapter 6 details aspects of sequence graphing that differ from function graphing.

Setting Sequence Graphing Mode

To display the mode screen, press \text{MODE}. To graph sequence functions, you must select Seq graphing mode before you enter window variables and before you enter sequence functions.

Sequence graphs automatically plot in Simul mode, regardless of the current plotting-order mode setting.

TI-84 Plus Sequence Functions \(u, v, \) and \(w\)

The TI-84 Plus has three sequence functions that you can enter from the keyboard: \(u, v, \) and \(w\). They are second functions of the \(7, 8, \) and \(9\) keys. Press \text{2nd} [\text{u}] to enter \(u\), for example.

You can define sequence functions in terms of:

\begin{itemize}
 \item The independent variable \(n\)
 \item The previous term in the sequence function, such as \(u(n-1)\)
 \item The term that precedes the previous term in the sequence function, such as \(u(n-2)\)
 \item The previous term or the term that precedes the previous term in another sequence function, such as \(u(n-1)\) or \(u(n-2)\) referenced in the sequence \(v(n)\).
\end{itemize}

\textbf{Note:} Statements in this chapter about \(u(n)\) are also true for \(v(n)\) and \(w(n)\); statements about \(u(n-1)\) are also true for \(v(n-1)\) and \(w(n-1)\); statements about \(u(n-2)\) are also true for \(v(n-2)\) and \(w(n-2)\).

Displaying the Sequence Y= Editor

After selecting Seq mode, press \text{Y=} to display the sequence Y= editor.
In this editor, you can display and enter sequences for \(u(n) \), \(v(n) \), and \(w(n) \). Also, you can edit the value for \(n \text{Min} \), which is the sequence window variable that defines the minimum \(n \) value to evaluate.

The sequence Y= editor displays the \(n \text{Min} \) value because of its relevance to \(u(n \text{Min}) \), \(v(n \text{Min}) \), and \(w(n \text{Min}) \), which are the initial values for the sequence equations \(u(n) \), \(v(n) \), and \(w(n) \), respectively.

\(n \text{Min} \) in the Y= editor is the same as \(n \text{Min} \) in the window editor. If you enter a new value for \(n \text{Min} \) in one editor, the new value for \(n \text{Min} \) is updated in both editors.

Note: Use \(u(n \text{Min}) \), \(v(n \text{Min}) \), or \(w(n \text{Min}) \) only with a recursive sequence, which requires an initial value.

Selecting Graph Styles

The icons to the left of \(u(n) \), \(v(n) \), and \(w(n) \) represent the graph style of each sequence (Chapter 3). The default in Seq mode is \(* \) (dot), which shows discrete values. Dot, \(/ \) (line), and \(\% \) (thick) styles are available for sequence graphing. Graph styles are ignored in Web format.

Selecting and Deselecting Sequence Functions

The TI-84 Plus graphs only the selected sequence functions. In the Y= editor, a sequence function is selected when the = signs of both \(u(n) \) and \(u(n \text{Min}) \) are highlighted.

To change the selection status of a sequence function, move the cursor onto the = sign of the function name, and then press \[\text{ENTER} \]. The status is changed for both the sequence function \(u(n) \) and its initial value \(u(n \text{Min}) \).

Defining and Editing a Sequence Function

To define or edit a sequence function, follow the steps in Chapter 3 for defining a function. The independent variable in a sequence is \(n \).

In Seq graphing mode, you can enter the sequence variable in either of two ways.

- Press \[X,T,0,n \].
- Press \[2nd \] \[\text{CATALOG} \] \[N \].

You can enter the function name from the keyboard (\[2nd \] \[u \], \[2nd \] \[v \], \[2nd \] \[w \]).

Generally, sequences are either nonrecursive or recursive. Sequences are evaluated only at consecutive integer values. \(n \) is always a series of consecutive integers, starting at zero or any positive integer.
Nonrecursive Sequences

In a nonrecursive sequence, the \(n \)th term is a function of the independent variable \(n \). Each term is independent of all other terms.

For example, in the nonrecursive sequence below, you can calculate \(u(5) \) directly, without first calculating \(u(1) \) or any previous term.

\[
\begin{align*}
\text{Plot1} & \quad \text{Plot2} & \quad \text{Plot3} \\
\text{nMin} &= 1 \\
\text{u}(n Min) &= 2 \\
\text{u}(n Min) &= 1
\end{align*}
\]

The sequence equation above returns the sequence 2, 4, 6, 8, 10, … for \(n = 1, 2, 3, 4, 5, \ldots \)

Note: You may leave blank the initial value \(u(n Min) \) when calculating nonrecursive sequences.

Recursive Sequences

In a recursive sequence, the \(n \)th term in the sequence is defined in relation to the previous term or the term that precedes the previous term, represented by \(u(n Min) \) and \(u(n Min - 1) \). A recursive sequence may also be defined in relation to \(n \), as in \(u(n) = u(n Min) - 2 + n \).

For example, in the sequence below you cannot calculate \(u(5) \) without first calculating \(u(1) \), \(u(2) \), \(u(3) \), and \(u(4) \).

\[
\begin{align*}
\text{Plot1} & \quad \text{Plot2} & \quad \text{Plot3} \\
\text{nMin} &= 1 \\
\text{u}(n Min) &= 2 \cdot u(n Min - 1) \\
\text{u}(n Min) &= 1
\end{align*}
\]

Using an initial value \(u(n Min) = 1 \), the sequence above returns 1, 2, 4, 8, 16, … .

Note: On the TI-84 Plus, you must type each character of the terms. For example, to enter \(u(n Min - 1) \), press [2nd] [u] [X,T,θ,n] [1] [1] [1].

Recursive sequences require an initial value or values, since they reference undefined terms.

- If each term in the sequence is defined in relation to the previous term, as in \(u(n Min - 1) \), you must specify an initial value for the first term.
• If each term in the sequence is defined in relation to the term that precedes the previous term, as in $u(n-2)$, you must specify initial values for the first two terms. Enter the initial values as a list enclosed in brackets { } with commas separating the values.

The value of the first term is 0 and the value of the second term is 1 for the sequence $u(n)$.

Setting Window Variables

To display the window variables, press [WINDOW]. These variables define the viewing window. The values below are defaults for Seq graphing in both Radian and Degree angle modes.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nMin=1</td>
<td>Smallest n value to evaluate</td>
</tr>
<tr>
<td>nMax=10</td>
<td>Largest n value to evaluate</td>
</tr>
<tr>
<td>PlotStart=1</td>
<td>First term number to be plotted</td>
</tr>
<tr>
<td>PlotStep=1</td>
<td>Incremental n value (for graphing only)</td>
</tr>
<tr>
<td>Xmin=-10</td>
<td>Smallest X value to be displayed</td>
</tr>
<tr>
<td>Xmax=10</td>
<td>Largest X value to be displayed</td>
</tr>
<tr>
<td>Xscl=1</td>
<td>Spacing between the X tick marks</td>
</tr>
<tr>
<td>Ymin=-10</td>
<td>Smallest Y value to be displayed</td>
</tr>
<tr>
<td>Ymax=10</td>
<td>Largest Y value to be displayed</td>
</tr>
<tr>
<td>Yscl=1</td>
<td>Spacing between the Y tick marks</td>
</tr>
</tbody>
</table>

$nMin$ must be an integer ≥ 0. $nMax$, PlotStart, and PlotStep must be integers ≥ 1.

$nMin$ is the smallest n value to evaluate. $nMin$ also is displayed in the sequence $Y= editor. $nMax$ is the largest n value to evaluate. Sequences are evaluated at $u(nMin), u(nMin+1), u(nMin+2), \ldots, u(nMax)$.

PlotStart is the first term to be plotted. PlotStart=1 begins plotting on the first term in the sequence. If you want plotting to begin with the fifth term in a sequence, for example, set PlotStart=5. The first four terms are evaluated but are not plotted on the graph.

PlotStep is the incremental n value for graphing only. PlotStep does not affect sequence evaluation; it only designates which points are plotted on the graph. If you specify PlotStep=2, the sequence is evaluated at each consecutive integer, but it is plotted on the graph only at every other integer.
Selecting Axes Combinations

Setting the Graph Format

To display the current graph format settings, press [2nd] [FORMAT]. Chapter 3 describes the format settings in detail. The other graphing modes share these format settings. The axes setting on the top line of the screen is available only in Seq mode.

<table>
<thead>
<tr>
<th>Axes Setting</th>
<th>x-axis</th>
<th>y-axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>n</td>
<td>$u(n), v(n), w(n)$</td>
</tr>
<tr>
<td>Web</td>
<td>$u(n-1), v(n-1), w(n-1)$</td>
<td>$u(n), v(n), w(n)$</td>
</tr>
<tr>
<td>uv</td>
<td>$u(n)$</td>
<td>$v(n)$</td>
</tr>
<tr>
<td>vw</td>
<td>$v(n)$</td>
<td>$w(n)$</td>
</tr>
<tr>
<td>uw</td>
<td>$u(n)$</td>
<td>$w(n)$</td>
</tr>
</tbody>
</table>

Displaying a Sequence Graph

To plot the selected sequence functions, press [GRAPH]. As a graph is plotted, the TI-84 Plus updates X, Y, and n.

Smart Graph applies to sequence graphs (Chapter 3).

Exploring Sequence Graphs

Free-Moving Cursor

The free-moving cursor in Seq graphing works the same as in Func graphing. In RectGC format, moving the cursor updates the values of X and Y; if CoordOn format is selected, X and Y are
displayed. In **PolarGC** format, X, Y, R, and θ are updated; if **CoordOn** format is selected, R and θ are displayed.

TRACE

The axes format setting affects TRACE.

When **Time**, uv, vw, or uw axes format is selected, TRACE moves the cursor along the sequence one PlotStep increment at a time. To move five plotted points at once, press `2nd` [x] or `2nd` [4].

- When you begin a trace, the trace cursor is on the first selected sequence at the term number specified by **PlotStart**, even if it is outside the viewing window.
- Quick Zoom applies to all directions. To center the viewing window on the current cursor location after you have moved the trace cursor, press **[enter]**. The trace cursor returns to **nMin**.

In Web format, the trail of the cursor helps identify points with attracting and repelling behavior in the sequence. When you begin a trace, the cursor is on the x-axis at the initial value of the first selected function.

Note: To move the cursor to a specified \(n \) during a trace, enter a value for \(n \), and press **[enter]**. For example, to quickly return the cursor to the beginning of the sequence, paste **nMin** to the \(n= \) prompt and press **[enter]**.

Moving the Trace Cursor to Any Valid \(n \) Value

To move the trace cursor to any valid \(n \) value on the current function, enter the number. When you enter the first digit, an \(n= \) prompt and the number you entered are displayed in the bottom-left corner of the screen. You can enter an expression at the \(n= \) prompt. The value must be valid for the current viewing window. When you have completed the entry, press **[enter]** to move the cursor.

ZOOM

ZOOM operations in Seq graphing work the same as in Func graphing. Only the X (Xmin, Xmax, and Xscl) and Y (Ymin, Ymax, and Yscl) window variables are affected.

PlotStart, **PlotStep**, **nMin**, and **nMax** are only affected when you select **ZStandard**. The VARS Zoom secondary menu ZU items 1 through 7 are the **ZOOM MEMORY** variables for Seq graphing.

CALC

The only **CALC** operation available in Seq graphing is **value**.
• When Time axes format is selected, value displays Y (the \(u(n) \) value) for a specified \(n \) value.

• When Web axes format is selected, value draws the web and displays Y (the \(u(n) \) value) for a specified \(n \) value.

• When \(uv, vw, \) or \(uw \) axes format is selected, value displays X and Y according to the axes format setting. For example, for \(uv \) axes format, X represents \(u(n) \) and Y represents \(v(n) \).

Evaluating \(u, v, \) and \(w \)

To enter the sequence names \(u, v, \) or \(w \), press 2nd [u], 2nd [v], or 2nd [w]. You can evaluate these names in any of three ways.

• Calculate the \(n \)th value in a sequence.

• Calculate a list of values in a sequence.

• Generate a sequence with \(u(n_{\text{start}},n_{\text{stop}},n_{\text{step}}) \). \(n_{\text{step}} \) is optional; default is 1.

\[
\begin{pmatrix}
2^n+u(3) \\
\begin{pmatrix}
1, 3, 5, 7, 9 \\
25, 49, 81
\end{pmatrix} \\
\begin{pmatrix}
1, 9, 25 \\
49, 81
\end{pmatrix}
\end{pmatrix}
\]

Graphing Web Plots

Graphing a Web Plot

To select Web axes format, press 2nd [FORMAT] \(\downarrow \) ENTER. A web plot graphs \(u(n) \) versus \(u(n-1) \), which you can use to study long-term behavior (convergence, divergence, or oscillation) of a recursive sequence. You can see how the sequence may change behavior as its initial value changes.

Valid Functions for Web Plots

When Web axes format is selected, a sequence will not graph properly or will generate an error.

• It must be recursive with only one recursion level (\(u(n-1) \) but not \(u(n-2) \)).

• It cannot reference \(n \) directly.

• It cannot reference any defined sequence except itself.

Displaying the Graph Screen

In Web format, press GRAPH to display the graph screen. The TI-84 Plus:

• Draws a \(y=x \) reference line in AxesOn format.

• Plots the selected sequences with \(u(n-1) \) as the independent variable.
Note: A potential convergence point occurs whenever a sequence intersects the \(y=x \) reference line. However, the sequence may or may not actually converge at that point, depending on the sequence’s initial value.

Drawing the Web

To activate the trace cursor, press [TRACE]. The screen displays the sequence and the current \(n, X, \) and \(Y \) values (\(X \) represents \(u(n-1) \) and \(Y \) represents \(u(n) \)). Press [] repeatedly to draw the web step by step, starting at \(n_{\text{Min}} \). In Web format, the trace cursor follows this course.

1. It starts on the x-axis at the initial value \(u(n_{\text{Min}}) \) (when \(\text{PlotStart}=1 \)).
2. It moves vertically (up or down) to the sequence.
3. It moves horizontally to the \(y=x \) reference line.
4. It repeats this vertical and horizontal movement as you continue to press [].

Using Web Plots to Illustrate Convergence

Example: Convergence

1. Press [Y=] in Seq mode to display the sequence Y= editor. Make sure the graph style is set to \(\cdot \) (dot), and then define \(n_{\text{Min}}, u(n) \) and \(u(n_{\text{Min}}) \) as \(u(n) = -0.8u(n-1) + 3.6. \)

3. Press [WINDOW] and set the variables as shown below.

\[
\begin{align*}
\text{nMin} &= 1, \quad \text{Xmin}=0, \quad \text{Ymin}=-10 \\
\text{nMax} &= 25, \quad \text{Xmax}=25, \quad \text{Ymax}=10 \\
\text{PlotStart} &= 1, \quad \text{Xscl}=1, \quad \text{Yscl}=1 \\
\text{PlotStep} &= 1
\end{align*}
\]

4. Press [GRAPH] to graph the sequence.

5. Press [2nd][FORMAT] and select the Web axes setting.
6. Press **WINDOW** and change the variables below.

 \[X_{\text{min}} = -10 \quad X_{\text{max}} = 10 \]

7. Press **GRAPH** to graph the sequence.

8. Press **TRACE**, and then press \[\downarrow \] to draw the web. The displayed cursor coordinates \(n, X(u(n-1)) \), and \(Y(u(n)) \) change accordingly. When you press \[\uparrow \], a new \(n \) value is displayed, and the trace cursor is on the sequence. When you press \[\downarrow \] again, the \(n \) value remains the same, and the cursor moves to the \(y=x \) reference line. This pattern repeats as you trace the web.

Graphing Phase Plots

Graphing with \(uv, vw, \) and \(uw \)

The phase-plot axes settings \(uv, vw, \) and \(uw \) show relationships between two sequences. To select a phase-plot axes setting, press \[y \]. \[\uparrow \] until the cursor is on \(uv, vw, \) or \(uw \), and then press \[\text{ENTER} \].

<table>
<thead>
<tr>
<th>Axes Setting</th>
<th>x-axis</th>
<th>y-axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(uv)</td>
<td>(u(n))</td>
<td>(v(n))</td>
</tr>
<tr>
<td>(vw)</td>
<td>(v(n))</td>
<td>(w(n))</td>
</tr>
<tr>
<td>(uw)</td>
<td>(u(n))</td>
<td>(w(n))</td>
</tr>
</tbody>
</table>

Example: Predator-Prey Model

Use the predator-prey model to determine the regional populations of a predator and its prey that would maintain population equilibrium for the two species.

This example uses the model to determine the equilibrium populations of foxes and rabbits, with initial populations of 200 rabbits \((u_{\text{Min}}) \) and 50 foxes \((v_{\text{Min}}) \).

These are the variables (given values are in parentheses):

- \(R \) = number of rabbits
- \(M \) = rabbit population growth rate without foxes \((.05) \)
- \(K \) = rabbit population death rate with foxes \((.001) \)
- \(W \) = number of foxes
- \(G \) = fox population growth rate with rabbits \((.0002) \)
1. Press Y in Seq mode to display the sequence Y= editor. Define the sequences and initial values for R_n and W_n as shown below. Enter the sequence R_n as $u(n)$ and enter the sequence W_n as $v(n)$.

$$u(n) = u(n-1) \times (1 + 0.05 - 0.001 \times v(n-1))$$

$$v(n) = v(n-1) \times (1 + 0.0002 \times u(n-1) - 0.03)$$

2. Press y, Í to select Time axes format.

3. Press p and set the variables as shown below.

4. Press GRAPH to graph the sequence.

5. Press TRACE to individually trace the number of rabbits ($u(n)$) and foxes ($v(n)$) over time (n).

Note: Press a number, and then press ENTER to jump to a specific n value (month) while in TRACE.
6. Press \(2^{\text{nd}}\) [FORMAT] \(\uparrow\) \(\uparrow\) ENTER to select \(uv\) axes format.
7. Press WINDOW and change these variables as shown below.

\[
\begin{align*}
X_{\text{min}} &= 84 \\
X_{\text{max}} &= 237 \\
X_{\text{scl}} &= 50 \\
Y_{\text{min}} &= 25 \\
Y_{\text{max}} &= 75 \\
Y_{\text{scl}} &= 10
\end{align*}
\]

8. Press TRACE. Trace both the number of rabbits (\(X\)) and the number of foxes (\(Y\)) through 400 generations.

Note: When you press TRACE, the equation for \(u\) is displayed in the top-left corner. Press \(\uparrow\) or \(\downarrow\) to see the equation for \(v\).

Comparing TI-84 Plus and TI-82 Sequence Variables

Sequences and Window Variables

Refer to the table if you are familiar with the TI-82. It shows TI-84 Plus sequences and sequence window variables, as well as their TI-82 counterparts.

<table>
<thead>
<tr>
<th>TI-84 Plus</th>
<th>TI-82</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the (Y=) editor:</td>
<td></td>
</tr>
<tr>
<td>(u(n))</td>
<td>(U_n)</td>
</tr>
<tr>
<td>(u(n_{\text{Min}}))</td>
<td>(U_{n_{\text{Start}}}) (window variable)</td>
</tr>
<tr>
<td>(v(n))</td>
<td>(V_n)</td>
</tr>
<tr>
<td>(v(n_{\text{Min}}))</td>
<td>(V_{n_{\text{Start}}}) (window variable)</td>
</tr>
<tr>
<td>(w(n))</td>
<td>not available</td>
</tr>
<tr>
<td>(w(n_{\text{Min}}))</td>
<td>not available</td>
</tr>
<tr>
<td>In the window editor:</td>
<td></td>
</tr>
<tr>
<td>(n_{\text{Min}})</td>
<td>(n_{\text{Start}})</td>
</tr>
<tr>
<td>(n_{\text{Max}})</td>
<td>(n_{\text{Max}})</td>
</tr>
<tr>
<td>PlotStart</td>
<td>(n_{\text{Min}})</td>
</tr>
<tr>
<td>PlotStep</td>
<td>not available</td>
</tr>
</tbody>
</table>
Keystroke Differences Between TI-84 Plus and TI-82

Sequence Keystroke Changes

Refer to the table if you are familiar with the TI-82. It compares TI-84 Plus sequence-name syntax and variable syntax with TI-82 sequence-name syntax and variable syntax.

<table>
<thead>
<tr>
<th>TI-84 Plus / TI-82</th>
<th>On TI-84 Plus, press:</th>
<th>On TI-82, press:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n / n)</td>
<td>(\text{X,T,\theta,n})</td>
<td>(\text{2nd} [n])</td>
</tr>
<tr>
<td>(u(n) / U_n)</td>
<td>(\text{2nd} [u])</td>
<td>(\text{2nd} [Y-VARS] 4)</td>
</tr>
<tr>
<td>(v(n) / V_n)</td>
<td>(\text{2nd} [v])</td>
<td>(\text{2nd} [Y-VARS] 4)</td>
</tr>
<tr>
<td>(w(n))</td>
<td>(\text{2nd} [w])</td>
<td>not available</td>
</tr>
<tr>
<td>(u(n-1) / U_{n-1})</td>
<td>(\text{2nd} [u])</td>
<td>(\text{2nd} [U_{n-1}])</td>
</tr>
<tr>
<td>(v(n-1) / V_{n-1})</td>
<td>(\text{2nd} [v])</td>
<td>(\text{2nd} [V_{n-1}])</td>
</tr>
<tr>
<td>(w(n-1))</td>
<td>(\text{2nd} [w])</td>
<td>not available</td>
</tr>
</tbody>
</table>
Chapter 7: Tables

Getting Started: Roots of a Function

Getting Started is a fast-paced introduction. Read the chapter for details.

Evaluate the function \(Y = X^3 - 2X \) at each integer between -10 and 10. How many sign changes occur, and at what \(X \) values?

1. Press \(\text{MODE} \) \(\downarrow \downarrow \downarrow \text{ENTER} \) to set \textit{Func} graphing mode.

2. Press \(\text{Y=} \). Press \(\text{X,T,θ,n} \) \(\text{MATH} \) \(3 \) to select \(3 \). Then press \(\text{2} \) \(\text{X,T,θ,n} \) to enter the function \(Y_1 = X^3 - 2X \).

3. Press \(\text{2nd} \) \(\text{TBLSET} \) to display the \textit{TABLE SETUP} screen. Press \(\text{2} \) \(\text{10} \) \(\text{ENTER} \) to set \(\text{TblStart} = -10 \). Press \(1 \) \(\text{ENTER} \) to set \(\Delta \text{Tbl} = 1 \).

Press \(\text{ENTER} \) to select \textit{Indpnt: Auto} (automatically generated independent values). Press \(\text{ENTER} \) to select \textit{Depend: Auto} (automatically generated dependent values).

4. Press \(\text{2nd} \) \(\text{TABLE} \) to display the table screen.

\textbf{Note:} The message on the entry line, “Press + for \(\Delta \text{Tbl} \)” is a reminder that you can change \(\Delta \text{Tbl} \) from this table view. The entry line is cleared when you press any key.

5. Press \(\uparrow \) until you see the sign changes in the value of \(Y_1 \). How many sign changes occur, and at what \(X \) values?

In this case, you can also see the roots of the function by finding when \(Y_1 = 0 \). You can explore changes in \(X \) by pressing \(\text{+} \) to display the \(\Delta \text{Tbl} \) prompt, entering a new value, and searching for your answer.
Setting Up the Table

TABLE SETUP Screen

To display the TABLE SETUP screen, press 2nd [TBLSET].

```
TABLE SETUP
TblStart=0
△Tbl=1
Indpnt: Auto Ask
Depend: Auto Ask
```

TblStart, △Tbl

TblStart (table start) defines the initial value for the independent variable. TblStart applies only when the independent variable is generated automatically (when Indpnt: Auto is selected).

△Tbl (table step) defines the increment for the independent variable.

Indpnt: Auto, Indpnt: Ask, Depend: Auto, Depend: Ask

<table>
<thead>
<tr>
<th>Selections</th>
<th>Table Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indpnt: Auto</td>
<td>Values are displayed automatically in both the independent-variable column and in all dependent-variable columns.</td>
</tr>
<tr>
<td>Depend: Auto</td>
<td></td>
</tr>
<tr>
<td>Indpnt: Ask</td>
<td>The table is empty. When you enter a value for the independent variable, all corresponding dependent-variable values are calculated and displayed automatically.</td>
</tr>
<tr>
<td>Depend: Auto</td>
<td></td>
</tr>
<tr>
<td>Indpnt: Auto</td>
<td>Values are displayed automatically for the independent variable. To generate a value for a dependent variable, move the cursor to that cell and press [ENTER].</td>
</tr>
<tr>
<td>Depend: Ask</td>
<td></td>
</tr>
<tr>
<td>Indpnt: Ask</td>
<td>The table is empty; enter values for the independent variable. To generate a value for a dependent variable, move the cursor to that cell and press [ENTER].</td>
</tr>
<tr>
<td>Depend: Ask</td>
<td></td>
</tr>
</tbody>
</table>

Setting Up the Table from the Home Screen or a Program

To store a value to TblStart, △Tbl, or TblInput from the home screen or a program, select the variable name from the VARS TABLE secondary menu. TblInput is a list of independent-variable values in the current table.

When you press 2nd [TBLSET] in the program editor, you can select IndpntAuto, IndpntAsk, DependAuto, and DependAsk.
Defining the Dependent Variables

Defining Dependent Variables from the Y= Editor

In the Y= editor, enter the functions that define the dependent variables. Only functions that are selected in the Y= editor are displayed in the table. The current graphing mode is used. In parametric mode, you must define both components of each parametric equation (Chapter 4).

Editing Dependent Variables from the Table Editor

To edit a selected Y= function from the table editor, follow these steps.

1. Press `2nd` [TABLE] to display the table, then press `▼` or `▲` to move the cursor to a dependent-variable column.

2. Press `▼` until the cursor is on the function name at the top of the column. The function is displayed on the bottom line.

3. Press `ENTER`. The cursor moves to the bottom line. Edit the function.

4. Press `ENTER` or `▼`. The new values are calculated. The table and the Y= function are updated automatically.

Note: You also can use this feature to view the function that defines a dependent variable without having to leave the table.
Displaying the Table

The Table

To display the table, press [2nd] [TABLE].

Note: The table abbreviates the values, if necessary.

<table>
<thead>
<tr>
<th>X</th>
<th>Y1</th>
<th>Y2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>39.173</td>
<td>126.459</td>
</tr>
<tr>
<td>11</td>
<td>39.173</td>
<td>126.459</td>
</tr>
<tr>
<td>12</td>
<td>39.173</td>
<td>126.459</td>
</tr>
</tbody>
</table>

Note: When the table first displays, the message “Press + for ΔTbl” is on the entry line. This message reminds you that you can press + to change ΔTbl at any time. When you press any key, the message disappears.

Independent and Dependent Variables

The current graphing mode determines which independent and dependent variables are displayed in the table (Chapter 1). In the table above, for example, the independent variable X and the dependent variables Y1 and Y2 are displayed because Func graphing mode is set.

<table>
<thead>
<tr>
<th>Graphing Mode</th>
<th>Independent Variable</th>
<th>Dependent Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Func (function)</td>
<td>X</td>
<td>Y1 through Y9, and Y0</td>
</tr>
<tr>
<td>Par (parametric)</td>
<td>T</td>
<td>X1T/Y1T through X6T/Y6T</td>
</tr>
<tr>
<td>Pol (polar)</td>
<td>θ</td>
<td>r1 through r6</td>
</tr>
<tr>
<td>Seq (sequence)</td>
<td>n</td>
<td>u(n), v(n), and w(n)</td>
</tr>
</tbody>
</table>

Clearing the Table from the Home Screen or a Program

From the home screen, select the ClrTable instruction from the CATALOG. To clear the table, press [ENTER].

From a program, select 9:ClrTable from the PRGM I/O menu or from the CATALOG. The table is cleared upon execution. If IndpntAsk is selected, all independent and dependent variable values on the table are cleared. If DependAsk is selected, all dependent variable values on the table are cleared.
Scrolling Independent-Variable Values

If Indpt: Auto is selected, you can press △ and □ in the independent-variable column to display more values. As you scroll the column, the corresponding dependent-variable values also are displayed. All dependent-variable values may not be displayed if Depend: Ask is selected.

Note: You can scroll back from the value entered for TblStart. As you scroll, TblStart is updated automatically to the value shown on the top line of the table. In the example above, TblStart=0 and ΔTbl=1 generates and displays values of X=0, ..., 6; but you can press △ to scroll back and display the table for X=1, ..., 5.

Changing Table Settings from the Table View

You can change table settings from the table view by highlighting a value in the table, pressing ▶, and entering a new Δ value.

1. Press ▼ and then press 1 [ALPHA] [F1] 1 2 □ X,T,0,n to enter the function Y1=1/2x.

2. Press 2nd [TABLE].

3. Press ▲ ▼ ▼ to move the cursor to highlight 3, and then press ▶.

4. Press 1 [ALPHA] [F1] 1 2 to change the table settings to view changes in X in increments of 1/2.
5. Press **ENTER**.

Displaying Other Dependent Variables

If you have defined more than two dependent variables, the first two selected Y= functions are displayed initially. Press `2` or `4` to display dependent variables defined by other selected Y= functions. The independent variable always remains in the left column, except during a trace with parametric graphing mode and G-T split-screen mode set.

![Table Example](image)

Note: To simultaneously display two dependent variables on the table that are not defined as consecutive Y= functions, go to the Y= editor and deselect the Y= functions between the two you want to display. For example, to simultaneously display Y4 and Y7 on the table, go to the Y= editor and deselect Y5 and Y6.
Chapter 8: Draw Instructions

Getting Started: Drawing a Tangent Line

Getting Started is a fast-paced introduction. Read the chapter for details.

Suppose you want to find the equation of the tangent line at $X = \frac{\sqrt{2}}{2}$ for the function $Y = \sin(X)$.

1. Before you begin, press [MODE] and select 4, Radian and Func, if necessary.

3. Press [ZOOM] 7 to select 7:ZTrig, which graphs the equation in the Zoom Trig window.

4. Press [2nd] [DRAW] 5 to select 5:Tangent(. The tangent instruction is initiated.

6. Press [ENTER]. The tangent line is drawn; the X value and the tangent-line equation are displayed on the graph.

Consider repeating this activity with the mode set to the number of decimal places desired. The first screen shows four decimal places. The second screen shows the decimal setting at Float.

Using the DRAW Menu

DRAW Menu

To display the DRAW menu, press [2nd] [DRAW]. The TI-84 Plus’s interpretation of these instructions depends on whether you accessed the menu from the home screen or the program editor or directly from a graph.

<table>
<thead>
<tr>
<th>DRAW</th>
<th>POINTS</th>
<th>STO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: ClrDraw</td>
<td>Clears all drawn elements.</td>
<td></td>
</tr>
<tr>
<td>2: Line(</td>
<td>Draws a line segment between 2 points.</td>
<td></td>
</tr>
<tr>
<td>3: Horizontal</td>
<td>Draws a horizontal line.</td>
<td></td>
</tr>
<tr>
<td>4: Vertical</td>
<td>Draws a vertical line.</td>
<td></td>
</tr>
<tr>
<td>5: Tangent(</td>
<td>Draws a line segment tangent to a function.</td>
<td></td>
</tr>
<tr>
<td>6: DrawF</td>
<td>Draws a function.</td>
<td></td>
</tr>
<tr>
<td>7: Shade(</td>
<td>Shades an area between two functions.</td>
<td></td>
</tr>
<tr>
<td>8: DrawInv</td>
<td>Draws the inverse of a function.</td>
<td></td>
</tr>
<tr>
<td>9: Circle(</td>
<td>Draws a circle.</td>
<td></td>
</tr>
<tr>
<td>0: Text(</td>
<td>Draws text on a graph screen.</td>
<td></td>
</tr>
<tr>
<td>A: Pen</td>
<td>Activates the free-form drawing tool.</td>
<td></td>
</tr>
</tbody>
</table>

Before Drawing on a Graph

The DRAW instructions draw on top of graphs. Therefore, before you use the DRAW instructions, consider whether you want to perform one or more of the following actions.

- Change the mode settings on the mode screen.
- Change the format settings on the format screen. You can press [2nd] [FORMAT] or use the shortcut on the mode screen to go to the format graph screen.
Chapter 8: Draw Instructions

- Enter or edit functions in the Y= editor.
- Select or deselect functions in the Y= editor.
- Change the window variable values.
- Turn stat plots on or off.
- Clear existing drawings with \texttt{ClrDraw}.

\textbf{Note:} If you draw on a graph and then perform any of the actions listed above, the graph is replotted without the drawings when you display the graph again. Before you clear drawings, you can store them with \texttt{StorePic}.

\textbf{Drawing on a Graph}

You can use any \texttt{DRAW} menu instructions except \texttt{DrawInv} to draw on Func, Par, Pol, and Seq graphs. \texttt{DrawInv} is valid only in Func graphing. The coordinates for all \texttt{DRAW} instructions are the display’s x-coordinate and y-coordinate values.

You can use most \texttt{DRAW} menu and \texttt{DRAW POINTS} menu instructions to draw directly on a graph, using the cursor to identify the coordinates. You also can execute these instructions from the home screen or from within a program. If a graph is not displayed when you select a \texttt{DRAW} menu instruction, the home screen is displayed.

\textbf{Clearing Drawings}

\textbf{Clearing Drawings When a Graph Is Displayed}

All points, lines, and shading drawn on a graph with \texttt{DRAW} instructions are temporary.

To clear drawings from the currently displayed graph, select \texttt{1:ClrDraw} from the \texttt{DRAW} menu. The current graph is replotted and displayed with no drawn elements.

\textbf{Clearing Drawings from the Home Screen or a Program}

To clear drawings on a graph from the home screen or a program, begin on a blank line on the home screen or in the program editor. Select \texttt{1:ClrDraw} from the \texttt{DRAW} menu. The instruction is copied to the cursor location. Press \texttt{\textnumero}.

When \texttt{ClrDraw} is executed, it clears all drawings from the current graph and displays the message \texttt{Done}. When you display the graph again, all drawn points, lines, circles, and shaded areas will be gone.

\texttt{ClrDraw} \texttt{ Done}

\textbf{Note:} Before you clear drawings, you can store them with \texttt{StorePic}.
Drawing Line Segments

Drawing a Line Segment Directly on a Graph

To draw a line segment when a graph is displayed, follow these steps.

1. Select 2:Line(from the DRAW menu.
2. Place the cursor on the point where you want the line segment to begin, and then press [ENTER].
3. Move the cursor to the point where you want the line segment to end. The line is displayed as you move the cursor. Press [ENTER].

To continue drawing line segments, repeat steps 2 and 3. To cancel Line(, press [CLEAR].

Drawing a Line Segment from the Home Screen or a Program

Line(also draws a line segment between the coordinates \((X_1,Y_1)\) and \((X_2,Y_2)\). The values may be entered as expressions.

\[\text{Line}(X_1,Y_1,X_2,Y_2) \]

To erase a line segment, enter \text{Line}(X_1,Y_1,X_2,Y_2,0)
Drawing Horizontal and Vertical Lines

Drawing a Line Directly on a Graph

To draw a horizontal or vertical line when a graph is displayed, follow these steps.

1. Select 3:Horizontal or 4:Vertical from the DRAW menu. A line is displayed that moves as you move the cursor.
2. Place the cursor on the y-coordinate (for horizontal lines) or x-coordinate (for vertical lines) through which you want the drawn line to pass.
3. Press ENTER to draw the line on the graph.

To continue drawing lines, repeat steps 2 and 3.

To cancel Horizontal or Vertical, press CLEAR.

Drawing a Line from the Home Screen or a Program

Horizontal (horizontal line) draws a horizontal line at $Y=y$, which can be an expression but not a list.

Vertical (vertical line) draws a vertical line at $X=x$, which can be an expression but not a list.

To instruct the TI-84 Plus to draw more than one horizontal or vertical line, separate each instruction with a colon (:).

MathPrint™ Classic

```
Horizontal ?:Vertical
Horizontal 3:Vertical
```
Drawing a Tangent Line Directly on a Graph

To draw a tangent line when a graph is displayed, follow these steps.

1. Select 5:Tangent(from the DRAW menu.
2. Press [and] to move the cursor to the function for which you want to draw the tangent line. The current graph’s Y= function is displayed in the top-left corner, if ExprOn is selected.
3. Press [and] or enter a number to select the point on the function at which you want to draw the tangent line.
4. Press ENTER. In Func mode, the X value at which the tangent line was drawn is displayed on the bottom of the screen, along with the equation of the tangent line. In all other modes, the \(\frac{dy}{dx} \) value is displayed.

5. Change the fixed decimal setting on the mode screen if you want to see fewer digits displayed for X and the equation for Y.

Drawing a Tangent Line from the Home Screen or a Program

\texttt{Tangent(} (tangent line) draws a line tangent to \textit{expression} in terms of X, such as Y1 or \(X^2 \), at point \(X=value \). X can be an expression. \textit{expression} is interpreted as being in Func mode.
Tangent($expression$,$value$)

Drawing Functions and Inverses

Drawing a Function

DrawF (draw function) draws $expression$ as a function in terms of X on the current graph. When you select 6:DrawF from the DRAW menu, the TI-84 Plus returns to the home screen or the program editor. **DrawF** is not interactive.

DrawF $expression$

Note: You cannot use a list in $expression$ to draw a family of curves.

Drawing an Inverse of a Function

DrawInv (draw inverse) draws the inverse of $expression$ by plotting X values on the y-axis and Y values on the x-axis. When you select 8:DrawInv from the DRAW menu, the TI-84 Plus returns to the home screen or the program editor. **DrawInv** is not interactive. **DrawInv** works in Func mode only.

DrawInv $expression$

Note: You cannot use a list of $expressions$ with **DrawInv**.
Shading Areas on a Graph

Shading a Graph

To shade an area on a graph, select `7:Shade(` from the DRAW menu. The instruction is pasted to the home screen or to the program editor.

\[\text{Shade(lowerfunc, upperfunc[, Xleft, Xright, pattern, patres])} \]

\[\text{Shade(lowerfunc, upperfunc)} \]

`Shade(` draws `lowerfunc` and `upperfunc` in terms of `X` on the current graph and shades the area that is specifically above `lowerfunc` and below `upperfunc`. Only the areas where `lowerfunc < upperfunc` are shaded.

`Xleft` and `Xright`, if included, specify left and right boundaries for the shading. `Xleft` and `Xright` must be numbers between `Xmin` and `Xmax`, which are the defaults.

`pattern` specifies one of four shading patterns.

- `pattern=1`: vertical (default)
- `pattern=2`: horizontal
- `pattern=3`: negative—slope 45°
- `pattern=4`: positive—slope 45°

`patres` specifies one of eight shading resolutions.

- `patres=1`: shades every pixel (default)
- `patres=2`: shades every second pixel
- `patres=3`: shades every third pixel
- `patres=4`: shades every fourth pixel
- `patres=5`: shades every fifth pixel
- `patres=6`: shades every sixth pixel
- `patres=7`: shades every seventh pixel
- `patres=8`: shades every eighth pixel

Drawing Circles

Drawing a Circle Directly on a Graph

To draw a circle directly on a displayed graph using the cursor, follow these steps.

1. Select `9:Circle(` from the DRAW menu.
2. Place the cursor at the center of the circle you want to draw. Press [ENTER].
3. Move the cursor to a point on the circumference. Press [ENTER] to draw the circle on the graph.

![Diagram of a circle being drawn on a graph]

Note: This circle is displayed as circular, regardless of the window variable values, because you drew it directly on the display. When you use the `Circle(` instruction from the home screen or a program, the current window variables may distort the shape.

To continue drawing circles, repeat steps 2 and 3. To cancel `Circle(`, press [CLEAR].

Drawing a Circle from the Home Screen or a Program

`Circle(` draws a circle with center \((X,Y)\) and radius. These values can be expressions.

\[\text{Circle}(X,Y,\text{radius}) \]

Note: When you use `Circle(` on the home screen or from a program, the current window values may distort the drawn circle. Use `ZSquare` (Chapter 3) before drawing the circle to adjust the window variables and make the circle circular.

Placing Text on a Graph

Placing Text Directly on a Graph

To place text on a graph when the graph is displayed, follow these steps.

1. Select `0:Text(` from the DRAW menu.
2. Place the cursor where you want the text to begin.
3. Enter the characters. Press [ALPHA] or [2nd] [A-LOCK] to enter letters and 9. You may enter TI-84 Plus functions, variables, and instructions. The font is proportional, so the exact number of characters you can place on the graph varies. As you type, the characters are placed on top of the graph.

To cancel `Text(`, press [CLEAR].
Placing Text on a Graph from the Home Screen or a Program

Text places on the current graph the characters comprising `value`, which can include TI-84 Plus functions and instructions. The top-left corner of the first character is at pixel `(row, column)`, where `row` is an integer between 0 and 57 and `column` is an integer between 0 and 94. Both `row` and `column` can be expressions.

```
  (0,0)   (0,94) 
  (57,42) (57,94)
```

Text(row,column,value,value…)

`value` can be text enclosed in quotation marks (" "), or it can be an expression. The TI-84 Plus will evaluate an expression and display the result with up to 10 characters.

```
Text(42,59,"y_1=x,
2x^3-2x+6")
```

Split Screen

On a **Horiz** split screen, the maximum value for `row` is 25. On a **G-T** split screen, the maximum value for `row` is 45, and the maximum value for `column` is 46.

Using Pen to Draw on a Graph

Using Pen to Draw on a Graph

Pen draws directly on a graph only. You cannot execute **Pen** from the home screen or a program. You can capture the image you created using TI-Connect™ software and save it to your computer for homework or teaching material or store it as a picture file on your TI-84 Plus (see Storing Graph Pictures below).

To draw on a displayed graph, follow these steps.

1. Select **A:Pen** from the **DRAW** menu.
2. Place the cursor on the point where you want to begin drawing. Press **ENTER** to turn on the pen.
3. Move the cursor. As you move the cursor, you draw on the graph, shading one pixel at a time.
4. Press **ENTER** to turn off the pen.
For example, **Pen** was used to create the arrow pointing to the local minimum of the selected function.

Note: To continue drawing on the graph, move the cursor to a new position where you want to begin drawing again, and then repeat steps 2, 3, and 4. To cancel **Pen**, press **CLEAR**.

Drawing Points on a Graph

DRAW POINTS Menu

To display the **DRAW POINTS** menu, press **y<~**. The TI-84 Plus’s interpretation of these instructions depends on whether you accessed this menu from the home screen or the program editor or directly from a graph.

<table>
<thead>
<tr>
<th>DRAW POINTS</th>
<th>STO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Pt-On()</td>
<td>Turns on a point.</td>
</tr>
<tr>
<td>2: Pt-Off()</td>
<td>Turns off a point.</td>
</tr>
<tr>
<td>3: Pt-Change()</td>
<td>Toggles a point on or off.</td>
</tr>
<tr>
<td>4: Pxl-On()</td>
<td>Turns on a pixel.</td>
</tr>
<tr>
<td>5: Pxl-Off()</td>
<td>Turns off a pixel.</td>
</tr>
<tr>
<td>6: Pxl-Change()</td>
<td>Toggles a pixel on or off.</td>
</tr>
<tr>
<td>7: pxl-Test()</td>
<td>Returns 1 if pixel on, 0 if pixel off.</td>
</tr>
</tbody>
</table>

Drawing Points Directly on a Graph with Pt-On()

To draw a point on a graph, follow these steps.

1. Select **1:Pt-On** from the **DRAW POINTS** menu.
2. Move the cursor to the position where you want to draw the point.
3. Press **ENTER** to draw the point.

To continue drawing points, repeat steps 2 and 3. To cancel **Pt-On**, press **CLEAR**.
Erasing Points with Pt-Off(

To erase (turn off) a drawn point on a graph, follow these steps.

1. Select 2:Pt-Off((point off) from the DRAW POINTS menu.
2. Move the cursor to the point you want to erase.
3. Press ENTER to erase the point.

To continue erasing points, repeat steps 2 and 3. To cancel Pt-Off(, press CLEAR.

Changing Points with Pt-Change(

To change (toggle on or off) a point on a graph, follow these steps.

1. Select 3:Pt-Change((point change) from the DRAW POINTS menu.
2. Move the cursor to the point you want to change.
3. Press ENTER to change the point's on/off status.

To continue changing points, repeat steps 2 and 3. To cancel Pt-Change(, press CLEAR.

Drawing Points from the Home Screen or a Program

Pt-On((point on) turns on the point at (X=x, Y=y). Pt-Off(turns the point off. Pt-Change(toggles the point on or off. mark is optional; it determines the point's appearance; specify 1, 2, or 3, where:

1 = • (dot; default) 2 = ☐ (box) 3 = + (cross)

Pt-On(x,y[,mark])
Pt-Off(x,y[,mark])
Pt-Change(x,y)

Note: If you specified mark to turn on a point with Pt-On(, you must specify mark when you turn off the point with Pt-Off(. Pt-Change(does not have the mark option.

Drawing Pixels

TI-84 Plus Pixels

A pixel is a square dot on the TI-84 Plus display. The Pxl- (pixel) instructions let you turn on, turn off, or reverse a pixel (dot) on the graph using the cursor. When you select a pixel instruction from
the DRAW POINTS menu, the TI-84 Plus returns to the home screen or the program editor. The pixel instructions are not interactive.

<table>
<thead>
<tr>
<th>(0,0)</th>
<th>(0,94)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(62,0)</td>
<td>(62,94)</td>
</tr>
</tbody>
</table>

Turning On and Off Pixels with Pxl-On(and Pxl-Off(
Pxl-On((pixel on) turns on the pixel at (row, column), where row is an integer between 0 and 62 and column is an integer between 0 and 94.

Pxl-Off(turns the pixel off. Pxl-Change(toggles the pixel on and off.

Pxl-On(row, column)
Pxl-Off(row, column)
Pxl-Change(row, column)

Using pxl-Test(
pxl-Test((pixel test) returns 1 if the pixel at (row, column) is turned on or 0 if the pixel is turned off on the current graph. row must be an integer between 0 and 62. column must be an integer between 0 and 94.

pxl-Test(row, column)

Split Screen

On a Horiz split screen, the maximum value for row is 30 for Pxl-On(, Pxl-Off(, Pxl-Change(, and pxl-Test(.

On a G-T split screen, the maximum value for row is 50 and the maximum value for column is 46 for Pxl-On(, Pxl-Off(, Pxl-Change(, and pxl-Test(.
Storing Graph Pictures (Pic)

DRAW STO Menu

To display the **DRAW STO** menu, press \(\text{[2nd]} [\text{DRAW}] [\blacktriangledown]\). When you select an instruction from the **DRAW STO** menu, the TI-84 Plus returns to the home screen or the program editor. The picture and graph database instructions are not interactive.

```markdown
<table>
<thead>
<tr>
<th>DRAW POINTS</th>
<th>STO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: StorePic</td>
<td>Stores the current picture.</td>
</tr>
<tr>
<td>2: RecallPic</td>
<td>Recalls a saved picture.</td>
</tr>
<tr>
<td>3: StoreGDB</td>
<td>Stores the current graph database.</td>
</tr>
<tr>
<td>4: RecallGDB</td>
<td>Recalls a saved graph database.</td>
</tr>
</tbody>
</table>
```

Storing a Graph Picture

You can store up to 10 graph pictures, each of which is an image of the current graph display, in picture variables Pic1 through Pic9, or Pic0. Later, you can superimpose the stored picture onto a displayed graph from the home screen or a program.

A picture includes drawn elements, plotted functions, axes, and tick marks. The picture does not include axes labels, lower and upper bound indicators, prompts, or cursor coordinates. Any parts of the display hidden by these items are stored with the picture.

To store a graph picture, follow these steps.

1. Select 1:StorePic from the **DRAW STO** menu. StorePic is pasted to the current cursor location.
2. Enter the number (from 1 to 9, or 0) of the picture variable to which you want to store the picture. For example, if you enter 3, the TI-84 Plus will store the picture to Pic3.

 Note: You also can select a variable from the **PICTURE** secondary menu ([IVARS] 4). The variable is pasted next to StorePic.
3. Press \([\text{ENTER}]\) to display the current graph and store the picture.
Recalling Graph Pictures (Pic)

Recalling a Graph Picture

To recall a graph picture, follow these steps.

1. Select 2:RecallPic from the DRAW STO menu. RecallPic is pasted to the current cursor location.
2. Enter the number (from 1 to 9, or 0) of the picture variable from which you want to recall a picture. For example, if you enter 3, the TI-84 Plus will recall the picture stored to Pic3.

 ![RecallPic 3]

 Note: You also can select a variable from the PICTURE secondary menu (IVARS 4). The variable is pasted next to RecallPic.
3. Press ENTER to display the current graph with the picture superimposed on it.
 Note: Pictures are drawings. You cannot trace a curve that is part of a picture.

Deleting a Graph Picture

To delete graph pictures from memory, use the MEMORY MANAGEMENT/DELETE secondary menu (Chapter 18).

Storing Graph Databases (GDB)

What Is a Graph Database?

A graph database (GDB) contains the set of elements that defines a particular graph. You can recreate the graph from these elements. You can store up to 10 GDBs in variables GDB1 through GDB9, or GDB0 and recall them to recreate graphs.

A GDB stores five elements of a graph.

- Graphing mode
- Window variables
- Format settings
- All functions in the Y= editor and the selection status of each
- Graph style for each Y= function

GDBs do not contain drawn items or stat plot definitions.

Storing a Graph Database

To store a graph database, follow these steps.
1. Select 3:StoreGDB from the DRAW STO menu. StoreGDB is pasted to the current cursor location.
2. Enter the number (from 1 to 9, or 0) of the GDB variable to which you want to store the graph database. For example, if you enter 7, the TI-84 Plus will store the GDB to GDB7.

Note: You also can select a variable from the GDB secondary menu (VARS 3). The variable is pasted next to StoreGDB.
3. Press ENTER to store the current database to the specified GDB variable.

Recalling Graph Databases (GDB)

Recalling a Graph Database

CAUTION: When you recall a GDB, it replaces all existing Y= functions. Consider storing the current Y= functions to another database before recalling a stored GDB.

To recall a graph database, follow these steps.

1. Select 4:RecallGDB from the DRAW STO menu. RecallGDB is pasted to the current cursor location.
2. Enter the number (from 1 to 9, or 0) of the GDB variable from which you want to recall a GDB. For example, if you enter 7, the TI-84 Plus will recall the GDB stored to GDB7.

Note: You also can select a variable from the GDB secondary menu (VARS 3). The variable is pasted next to RecallGDB.
3. Press ENTER to replace the current GDB with the recalled GDB. The new graph is not plotted. The TI-84 Plus changes the graphing mode automatically, if necessary.

Deleting a Graph Database

To delete a GDB from memory, use the MEMORY MANAGEMENT/DELETE secondary menu (Chapter 18).
Chapter 9: Split Screen

Getting Started: Exploring the Unit Circle

Getting Started is a fast-paced introduction. Read the chapter for details.

Use G-T (graph-table) split-screen mode to explore the unit circle and its relationship to the numeric values for the commonly used trigonometric angles of 0° 30°, 45°, 60°, 90°, and so on.

1. Press MODE to display the mode screen. Press \[\text{ \悋} \] [\text{ \悟} \] to select Degree mode. Press \[\text{ \悋} \] [\text{ \悋} \] [\text{ \悟} \] [\text{ \悟} \] [\text{ \悟} \] to select Par (parametric) graphing mode. Press \[\text{ \悋} \] [\text{ \悋} \] [\text{ \悋} \] [\text{ \悋} \] [\text{ \悟} \] [\text{ \悟} \] [\text{ \悟} \] to select G-T (graph-table) split-screen mode.

2. Press \[\text{ \悋} \] [\text{ \悋} \] [\text{ \悋} \] [\text{ \悋} \] [\text{ \悟} \] to display the format screen. Press \[\text{ \悋} \] [\text{ \悋} \] [\text{ \悋} \] [\text{ \悟} \] [\text{ \悟} \] [\text{ \悟} \] [\text{ \悟} \] to select ExprOff.

3. Press \[\text{ \悋} \] [\text{ \悟} \] to display the Y= editor for Par graphing mode. Press \[\text{ \悋} \] [\text{ \悟} \] to store \[\cos(T) \] to \[X1T \]. Press \[\text{ \悋} \] [\text{ \悟} \] to store \[\sin(T) \] to \[Y1T \].

4. Press \[\text{ \悟} \] [\text{ \悟} \] to display the window editor. Enter these values for the window variables.

 \[T_{\text{min}} = 0 \quad X_{\text{min}} = 2.3 \quad Y_{\text{min}} = 2.5 \]
 \[T_{\text{max}} = 360 \quad X_{\text{max}} = 2.3 \quad Y_{\text{max}} = 2.5 \]
 \[T_{\text{step}} = 15 \quad X_{\text{scl}} = 1 \quad Y_{\text{scl}} = 1 \]

5. Press \[\text{ \悟} \] [\text{ \悟} \] to display the unit circle graphically in Degree mode and the trace cursor is activated. When \[T = 0 \] (from the graph trace coordinates), you can see from the table on the right that the value of \[X1T \left(\cos(T) \right) \] is 1 and \[Y1T \left(\sin(T) \right) \] is 0. Press \[\text{ \悟} \] to move the cursor to the next 15° angle increment. As you trace around the circle in steps of 15°, an approximation of the standard value for each angle is highlighted in the table.

6. Press \[\text{ \悋} \] [\text{ \悟} \] [\text{ \悟} \] [\text{ \悟} \] [\text{ \悟} \] and change Indpnt to Ask.
Using Split Screen

Setting a Split-Screen Mode

To set a split-screen mode, press **MODE**, and then move the cursor to **Horiz** or **G-T** and press **ENTER**.

- Select **Horiz** (horizontal) to display the graph screen and another screen split horizontally.
- Select **G-T** (graph-table) to display the graph screen and table screen split vertically.

The split screen is activated when you press any key that applies to either half of the split screen.

If stat plots are turned on, the plots are shown along with the x-y plots in graphs. Press **2nd [TABLE]** to make the table portion of the split screen active and to display the list data. Press **☑** or **☐** to highlight a value you want to edit, and then enter a new value directly in the table to overwrite the previous value. Press **~** repeatedly to display each column of data (both table and list data).
Split-screen display with both x-y plots and stat plots

Some screens are never displayed as split screens. For example, if you press [MODE] in Horiz or G-T mode, the mode screen is displayed as a full screen. If you then press a key that displays either half of a split screen, such as [TRACE], the split screen returns.

When you press a key or key combination in either Horiz or G-T mode, the cursor is placed in the half of the display to which that key applies. For example, if you press [TRACE], the cursor is placed in the half where the graph is displayed. If you press [2nd] [TABLE], the cursor is placed in the half where the table is displayed.

The TI-84 Plus will remain in split-screen mode until you change back to Full screen mode.

Horiz (Horizontal) Split Screen

Horiz Mode

In Horiz (horizontal) split-screen mode, a horizontal line splits the screen into top and bottom halves.

The top half displays the graph.

The bottom half displays any of these screens.

- Home screen (four lines)
- Y= editor (four lines)
- Stat list editor (two rows)
- Window editor (three settings)
- Table editor (two rows)

Moving from Half to Half in Horiz Mode

To use the top half of the split screen:
• Press \texttt{GRAPH} or \texttt{TRACE}.
• Select a ZOOM or CALC operation.

To use the bottom half of the split screen:

• Press any key or key combination that displays the home screen.
• Press \texttt{Y=} (Y= editor).
• Press \texttt{STAT} \texttt{ENTER} (stat list editor).
• Press \texttt{WINDOW} (window editor).
• Press \texttt{2nd} \texttt{TABLE} (table editor).

\textbf{Full Screens in Horiz Mode}

All other screens are displayed as full screens in Horiz split-screen mode.

To return to the Horiz split screen from a full screen when in Horiz mode, press any key or key combination that displays the graph, home screen, Y= editor, stat list editor, window editor, or table editor.

\textbf{G-T (Graph-Table) Split Screen}

\textbf{G-T Mode}

In G-T (graph-table) split-screen mode, a vertical line splits the screen into left and right halves.

The left half displays all active graphs and plots.

The right half displays either table data corresponding to the graph at the left or list data corresponding to the plot at the left.

\textbf{Moving from Half to Half in G-T Mode}

To use the left half of the split screen:

• Press \texttt{GRAPH} or \texttt{TRACE}.
• Select a ZOOM or CALC operation.

To use the right half of the split screen, press \texttt{2nd} \texttt{TABLE}. If the values on the right are list data, these values can be edited similarly to using the Stat List Editor.
Using TRACE in G-T Mode

As you press [a] or [r] to move the trace cursor along a graph in the split screen’s left half in G-T mode, the table on the right half automatically scrolls to match the current cursor values. If more than one graph or plot is active, you can press [a] or [r] to select a different graph or plot.

Note: When you trace in Par graphing mode, both components of an equation (X_n and Y_n) are displayed in the two columns of the table. As you trace, the current value of the independent variable T is displayed on the graph.

Full Screens in G-T Mode

All screens other than the graph and the table are displayed as full screens in G-T split-screen mode.

To return to the G-T split screen from a full screen when in G-T mode, press any key or key combination that displays the graph or the table.

TI-84 Plus Pixels in Horiz and G-T Modes

Note: Each set of numbers in parentheses above represents the row and column of a corner pixel, which is turned on.

DRAW POINTS Menu Pixel Instructions

For Pxl-On(, Pxl-Off(, Pxl-Change(, and pxl-Test(:

- In Horiz mode, row must be ≤30; column must be ≤94.
- In G-T mode, row must be ≤50; column must be ≤46.

Pxl-On(row,column)
DRAW Menu Text(Instruction
For the Text(instruction:

- In Horiz mode, row must be ≤25; column must be ≤94.
- In G-T mode, row must be ≤45; column must be ≤46.

Text(row,column,"text")

PRGM I/O Menu Output(Instruction
For the Output(instruction:

- In Horiz mode, row must be ≤4; column must be ≤16.
- In G-T mode, row must be ≤8; column must be ≤16.

Output(row,column,"text")

Note: The Output(instruction can only be used within a program.

Setting a Split-Screen Mode from the Home Screen or a Program
To set Horiz or G-T from a program, follow these steps.

1. Press MODE while the cursor is on a blank line in the program editor.
2. Select Horiz or G-T.

The instruction is pasted to the cursor location. The mode is set when the instruction is encountered during program execution. It remains in effect after execution.

Note: You also can paste Horiz or G-T to the home screen or program editor from the CATALOG (Chapter 15).
Chapter 10: Matrices

Getting Started: Using the MTRX Shortcut Menu

Getting Started is a fast-paced introduction. Read the chapter for details.

You can use the MTRX shortcut menu (ALPHA [F3]) to enter a quick matrix calculation on the home screen or in the Y= editor.

Note: To input a fraction in a matrix, delete the pre-populated zero first.

Example: Add the following matrices: \(\begin{pmatrix} 2 & -3 \\ 5 & 8 \end{pmatrix} \) and \(\begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix} \) and store the result to matrix C.

1. Press ALPHA [F3] to display the quick matrix editor. The default size of the matrix is two rows by two columns.

2. Press \(\left\langle \begin{array}{c} \uparrow \\ \uparrow \end{array} \right\rangle \) to highlight OK and then press ENTER.

3. Press 2 \(\left\langle \begin{array}{c} \times \\ \times \end{array} \right\rangle \) 3 \(\left\langle \begin{array}{c} \times \\ \times \end{array} \right\rangle \) 5 \(\left\langle \begin{array}{c} \times \\ \times \end{array} \right\rangle \) 8 \(\left\langle \begin{array}{c} \times \\ \times \end{array} \right\rangle \) to create the first matrix.

4. Press \(\left\langle \begin{array}{c} \uparrow \\ \uparrow \end{array} \right\rangle \) ALPHA [F3] \(\left\langle \begin{array}{c} \times \\ \times \end{array} \right\rangle \) ENTER 4 \(\left\langle \begin{array}{c} \times \\ \times \end{array} \right\rangle \) 3 \(\left\langle \begin{array}{c} \times \\ \times \end{array} \right\rangle \) 2 \(\left\langle \begin{array}{c} \times \\ \times \end{array} \right\rangle \) 1 \(\left\langle \begin{array}{c} \times \\ \times \end{array} \right\rangle \) ENTER to create the second matrix and perform the calculation.

5. Press \(\text{STO} \left\langle \begin{array}{c} \text{2nd} \end{array} \right\rangle \) [MATRIX] and select 3:[C].
Getting Started: Systems of Linear Equations

Getting Started is a fast-paced introduction. Read the chapter for details.

Find the solution of \(X + 2Y + 3Z = 3 \) and \(2X + 3Y + 4Z = 3 \). On the TI-84 Plus, you can solve a system of linear equations by entering the coefficients as elements in a matrix, and then using \(\text{rref} \) to obtain the reduced row-echelon form.

1. Press \(\text{2nd} \) [MATRIX]. Press \(\downarrow \) \(\downarrow \) to display the \text{MATRIX EDIT} menu. Press 1 to select \(\text{[A]} \).
2. Press 2 ENTER 4 ENTER to define a 2×4 matrix. The rectangular cursor indicates the current element. Ellipses (…) indicate additional columns beyond the screen.
3. Press 1 ENTER to enter the first element. The rectangular cursor moves to the second column of the first row.

In the matrix editor (\(\text{2nd} \) [MATRIX]), you can see that matrix \(\text{[C]} \) has dimension 2×2.

You can press \(\times \) \(\times \) to display the \text{EDIT} screen and then select \(\text{[C]} \) to edit it.
Chapter 10: Matrices

Defining a Matrix

What Is a Matrix?

A matrix is a two-dimensional array. You can display, define, or edit a matrix in the matrix editor. You can also define a matrix using the MTRX shortcut menu (\texttt{[ALPHA [3])}. The TI-84 Plus has 10 matrix variables, \texttt{[A]} through \texttt{[J]}. You can define a matrix directly in an expression. A matrix, depending on available memory, may have up to 99 rows or columns. You can store only real numbers in TI-84 Plus matrices. Fractions are stored as real numbers and can be used in matrices.

Selecting a Matrix

Before you can define or display a matrix in the editor, you first must select the matrix name. To do so, follow these steps.

1. Press \texttt{2nd [MATRX [to display the \texttt{MATRX EDIT} menu. The dimensions of any previously defined matrices are displayed.

2. Select the matrix you want to define. The \texttt{MATRX EDIT} screen is displayed.

4. Press 2 \texttt{ENTER} 3 \texttt{ENTER} 4 \texttt{ENTER} 3 \texttt{ENTER} to complete the first row for \(X + 2Y + 3Z = 3\).

5. Press 2 \texttt{ENTER} 3 \texttt{ENTER} 4 \texttt{ENTER} 3 \texttt{ENTER} to enter the second row for \(2X + 3Y + 4Z = 3\).

6. Press \texttt{2nd [QUIT]} to return to the home screen. If necessary, press \texttt{CLEAR} to clear the home screen. Press \texttt{2nd [MATRX [to display the \texttt{MATRX MATH} menu. Press \texttt{]} to wrap to the end of the menu. Select \texttt{B:rref} to copy \texttt{rref} to the home screen.

7. Press \texttt{2nd [MATRX [1} to select \texttt{1: [A]} from the \texttt{MATRX NAMES} menu. Press \texttt{]} \texttt{ENTER}. The reduced row-echelon form of the matrix is displayed and stored in \texttt{Ans}.

\begin{align*}
1X - 1Z &= -3 \quad \text{therefore} \quad X = -3 + Z \\
1Y + 2Z &= 3 \quad \text{therefore} \quad Y = 3 - 2Z
\end{align*}
Accepting or Changing Matrix Dimensions

The dimensions of the matrix (row × column) are displayed on the top line. The dimensions of a new matrix are 1 × 1. You must accept or change the dimensions each time you edit a matrix. When you select a matrix to define, the cursor highlights the row dimension.

- To accept the row dimension, press [ENTER].
- To change the row dimension, enter the number of rows (up to 99), and then press [ENTER].

The cursor moves to the column dimension, which you must accept or change the same way you accepted or changed the row dimension. When you press [ENTER], the rectangular cursor moves to the first matrix element.

Viewing and Editing Matrix Elements

Displaying Matrix Elements

After you have set the dimensions of the matrix, you can view the matrix and enter values for the matrix elements. In a new matrix, all values are zero.

Select the matrix from the MATRX EDIT menu and enter or accept the dimensions. The center portion of the matrix editor displays up to seven rows and three columns of a matrix, showing the values of the elements in abbreviated form if necessary. The full value of the current element, which is indicated by the rectangular cursor, is displayed on the bottom line.

This is an 8 × 4 matrix. Ellipses in the left or right column indicate additional columns. ↑ or ↓ in the right column indicate additional rows.

Deleting a Matrix

To delete matrices from memory, use the MEMORY MANAGEMENT/DELETE secondary menu (Chapter 18).

Viewing a Matrix

The matrix editor has two contexts, viewing and editing. In viewing context, you can use the cursor keys to move quickly from one matrix element to the next. The full value of the highlighted element is displayed on the edit line.
Select the matrix from the **MATRX EDIT** menu, and then enter or accept the dimensions.

```
MATRX[A]  8 x 4
1.5    12  1/2
0      0   0
2+x/8  25x2 0
0      7.183 0
1.1=3,141592653...
```

Using Viewing-Context Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>< or ></td>
<td>Moves the cursor within the current row</td>
</tr>
<tr>
<td>< or ></td>
<td>Moves the cursor within the current column; on the top row, > moves the cursor to the column dimension; on the column dimension, < moves the cursor to the row dimension</td>
</tr>
<tr>
<td>ENTER</td>
<td>Switches to editing context; activates the edit cursor on the bottom line</td>
</tr>
<tr>
<td>CLEAR</td>
<td>Switches to editing context; clears the value on the bottom line</td>
</tr>
<tr>
<td>Any entry character</td>
<td>Switches to editing context; clears the value on the bottom line; copies the character to the bottom line</td>
</tr>
<tr>
<td>2nd [INS]</td>
<td>Nothing</td>
</tr>
<tr>
<td>DEL</td>
<td>Nothing</td>
</tr>
</tbody>
</table>

Editing a Matrix Element

In editing context, an edit cursor is active on the bottom line. To edit a matrix element value, follow these steps.

1. Select the matrix from the **MATRX EDIT** menu, and then enter or accept the dimensions.
2. Press <, <, >, and > to move the cursor to the matrix element you want to change.
3. Switch to editing context by pressing ENTER, CLEAR, or an entry key.
4. Change the value of the matrix element using the editing-context keys described below. You may enter an expression, which is evaluated when you leave editing context.
 Note: You can press CLEAR ENTER to restore the value at the cursor if you make a mistake.
5. Press ENTER, >, or < to move to another element.
Using Editing-Context Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>← or →</td>
<td>Moves the edit cursor within the value</td>
</tr>
<tr>
<td>↓ or ↑</td>
<td>Stores the value displayed on the edit line to the matrix element; switches to viewing context and moves the cursor within the column</td>
</tr>
<tr>
<td>ENTER</td>
<td>Stores the value displayed on the edit line to the matrix element; switches to viewing context and moves the cursor to the next row element</td>
</tr>
<tr>
<td>CLEAR</td>
<td>Clears the value on the bottom line</td>
</tr>
<tr>
<td>Any entry character</td>
<td>Copies the character to the location of the edit cursor on the bottom line</td>
</tr>
<tr>
<td>2nd [INS]</td>
<td>Activates the insert cursor</td>
</tr>
<tr>
<td>DEL</td>
<td>Deletes the character under the edit cursor on the bottom line</td>
</tr>
</tbody>
</table>

Using Matrices with Expressions

To use a matrix in an expression, you can do any of the following.

- Copy the name from the **MATRIX NAMES** menu.
- Recall the contents of the matrix into the expression with 2nd [RCL] (Chapter 1).
- Enter the matrix directly (see below).

Entering a Matrix in an Expression

You can enter, edit, and store a matrix in the matrix editor. You also can enter a matrix directly in an expression.

To enter a matrix in an expression, follow these steps.

1. Press 2nd [] to indicate the beginning of the matrix.
2. Press 2nd [] to indicate the beginning of a row.
3. Enter a value, which can be an expression, for each element in the row. Separate the values with commas.
4. Press 2nd [] to indicate the end of a row.
5. Repeat steps 2 through 4 to enter all of the rows.
6. Press 2nd [] to indicate the end of the matrix.

The resulting matrix is displayed in the form:

```
[[element1,1,...,element1,n],...,[elementm,1,...,elementm,n]]
```

Any expressions are evaluated when the entry is executed.
Note:

- The commas that you must enter to separate elements are not displayed on output.
- Closing brackets are required when you enter a matrix directly on the home screen or in an expression.
- When you define a matrix using the matrix editor, it is automatically stored. However, when you enter a matrix directly on the home screen or in an expression, it is not automatically stored, but you can store it.

In MathPrint™ mode, you could also use the MTRX shortcut menu to enter this kind of matrix:

1. Press \texttt{\textsc{alpha}} \texttt{[4]} \texttt{[1]} \texttt{[2]} \texttt{[3]} \texttt{[1]} \texttt{[4]} \texttt{[5]} \texttt{[6]} to define the matrix dimension.
2. Press \texttt{1} \texttt{[2]} \texttt{[2]} \texttt{[2]} \texttt{[4]} \texttt{[5]} \texttt{[6]} to define the matrix.
3. Press \texttt{\textsc{enter}} to perform the calculation.

Displaying and Copying Matrices

Displaying a Matrix

To display the contents of a matrix on the home screen, select the matrix from the \texttt{\textsc{matrix names}} menu, and then press \texttt{\textsc{enter}}.

In MathPrint™ mode:

- An arrow at the left or right indicates additional columns.
- An arrow at the top or bottom indicates additional rows.

In Classic mode:

- Ellipses in the left or right column indicate additional columns.
• ↑ or ↓ in the right column indicate additional rows.

In either mode, press [↑], [↓], [←], and [→] to scroll the matrix. You can scroll the matrix after you press [ENTER] to calculate the matrix. If you cannot scroll the matrix, press [→] [ENTER] [ENTER] to repeat the calculation.

-9 4 -9 -1 4	46.0000 161.0↑
-4 4 -5 8	-116.0000 -188...
3 -2 8 -9 -6	-49.0000 -62.0...
-1 2 -8 -9 -3	235.0000 -96.0...
-5 9 1 1 -3	47.0000 65.00...
2 ▼ 7 ▼ 1	3.0000 -69.0↓

MathPrint™ Classic

Note:

• You cannot copy a matrix output from the history.

• Matrix calculations are not saved when you change from MathPrint™ mode to Classic mode or vice-versa.

Copying One Matrix to Another

To copy a matrix, follow these steps.

1. Press 2nd [MATRIX] to display the MATRX NAMES menu.
2. Select the name of the matrix you want to copy.
3. Press [STOP].
4. Press 2nd [MATRIX] again and select the name of the new matrix to which you want to copy the existing matrix.
5. Press [ENTER] to copy the matrix to the new matrix name.

Accessing a Matrix Element

On the home screen or from within a program, you can store a value to, or recall a value from, a matrix element. The element must be within the currently defined matrix dimensions. Select matrix from the MATRX NAMES menu.

\[[\text{matrix}][\text{row},\text{column}]\]
Using Math Functions with Matrices

You can use many of the math functions on the TI-84 Plus keypad, the MATH menu, the MATH NUM menu, and the MATH TEST menu with matrices. However, the dimensions must be appropriate. Each of the functions below creates a new matrix; the original matrix remains the same.

Addition, Subtraction, Multiplication

To add or subtract matrices, the dimensions must be the same. The answer is a matrix in which the elements are the sum or difference of the individual corresponding elements.

\[\text{matrixA} + \text{matrixB} \]
\[\text{matrixA} - \text{matrixB} \]

To multiply two matrices together, the column dimension of \(\text{matrixA} \) must match the row dimension of \(\text{matrixB} \).

\[\text{matrixA} \times \text{matrixB} \]

Multiplying a matrix by a value or a value by a matrix returns a matrix in which each element of matrix is multiplied by value.

\[\text{matrix} \times \text{value} \]
\[\text{value} \times \text{matrix} \]
Negation

Negating a matrix returns a matrix in which the sign of every element is changed.

\[-\text{matrix}\]

\[
\begin{bmatrix}
2 & 2 \\
3 & 4 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
-2 & -2 \\
-3 & -4 \\
\end{bmatrix}
\]

abs(

abs((absolute value, MATH NUM menu) returns a matrix containing the absolute value of each element of matrix.

\[\text{abs(matrix)}\]

\[
\begin{bmatrix}
0.23 & 0.69 \\
0.25 & 0.14 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.23 & 0.69 \\
0.25 & 0.14 \\
\end{bmatrix}
\]

round(

round((MATH NUM menu) returns a matrix. It rounds every element in matrix to #decimals \((\leq 9)\). If #decimals is omitted, the elements are rounded to 10 digits.

\[\text{round(matrix[, #decimals])}\]

\[
\begin{bmatrix}
1.259 & 2.333 \\
3.662 & 4.123 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.26 & 2.33 \\
3.66 & 4.12 \\
\end{bmatrix}
\]

Inverse

Use the \(^{-1}\) function (\(X^-1\)) or \(X\) \(-1\) to invert a matrix. matrix must be square. The determinant cannot equal zero.
Powers

To raise a matrix to a power, matrix must be square. You can use \(^2\) (\(\text{MATH}\) menu), \(^3\) (MATH menu), or \(^\text{power}\) (\(\text{\{\}}\)) for integer power between 0 and 255.

\[
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}^2 = \begin{bmatrix}
1 \cdot 1 + 2 \cdot 3 & 1 \cdot 2 + 2 \cdot 4 \\
3 \cdot 1 + 4 \cdot 3 & 3 \cdot 2 + 4 \cdot 4
\end{bmatrix} = \begin{bmatrix}
7 & 10 \\
15 & 22
\end{bmatrix}
\]

Relational Operations

To compare two matrices using the relational operations = and ≠ (TEST menu), they must have the same dimensions. = and ≠ compare \(\text{matrixA}\) and \(\text{matrixB}\) on an element-by-element basis. The other relational operations are not valid with matrices.

\(\text{matrixA=matrixB}\) returns 1 if every comparison is true; it returns 0 if any comparison is false.

\(\text{matrixA#matrixB}\) returns 1 if at least one comparison is false; it returns 0 if no comparison is false.

\[
\begin{bmatrix}
1 & 2 & 3 \\
3 & 2 & 1
\end{bmatrix} \neq \begin{bmatrix}
1 & 2 & 3 \\
1 & 2 & 3
\end{bmatrix} = 0
\]

\[
\begin{bmatrix}
1 & 2 \\
3 & 1
\end{bmatrix} \neq \begin{bmatrix}
1 & 2 \\
3 & 1
\end{bmatrix} = 0
\]

\[
\begin{bmatrix}
1 & 2 \\
3 & 1
\end{bmatrix} \neq \begin{bmatrix}
1 & 2 \\
3 & 1
\end{bmatrix} = 0
\]
iPart(, fPart(, int(

iPart((integer part), fPart((fractional part), and int((greatest integer) are on the MATH NUM menu.

iPart(returns a matrix containing the integer part of each element of matrix.

fPart(returns a matrix containing the fractional part of each element of matrix.

int(returns a matrix containing the greatest integer of each element of matrix.

```
iPart(matrix)
fPart(matrix)
int(matrix)
```

```
\begin{bmatrix}
\frac{5}{4} & \frac{10}{3} \\
2 & \frac{29}{20}
\end{bmatrix}
\quad iPart([C]) =
\begin{bmatrix}
1 & 3 \\
100 & 47
\end{bmatrix}
\quad fPart([C]) =
\begin{bmatrix}
\frac{1}{4} & \frac{1}{3} \\
\frac{1}{2} & \frac{29}{20}
\end{bmatrix}
\end{bmatrix}
\quad iPart([D]) =
\begin{bmatrix}
1 & 3 \\
100 & 47
\end{bmatrix}
\quad fPart([D]) =
\begin{bmatrix}
\frac{1.25}{100.5} & \frac{3.333}{47.15}
\end{bmatrix}
\end{bmatrix}
```

Using the MATRX MATH Operations

MATRX MATH Menu

To display the MATRX MATH menu, press `2nd` `[MATRX] 1`.

<table>
<thead>
<tr>
<th>NAMES</th>
<th>MATH</th>
<th>EDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: det(</td>
<td>Calculates the determinant.</td>
<td></td>
</tr>
<tr>
<td>2: T</td>
<td>Transposes the matrix.</td>
<td></td>
</tr>
<tr>
<td>3: dim(</td>
<td>Returns the matrix dimensions.</td>
<td></td>
</tr>
<tr>
<td>4: Fill(</td>
<td>Fills all elements with a constant.</td>
<td></td>
</tr>
<tr>
<td>5: identity(</td>
<td>Returns the identity matrix.</td>
<td></td>
</tr>
<tr>
<td>6: randM(</td>
<td>Returns a random matrix.</td>
<td></td>
</tr>
<tr>
<td>7: augment(</td>
<td>Appends two matrices.</td>
<td></td>
</tr>
<tr>
<td>8: Matrşlist(</td>
<td>Stores a matrix to a list.</td>
<td></td>
</tr>
</tbody>
</table>
det

det (determinant) returns the determinant (a real number) of a square matrix.

det(matrix)

Transpose

T (transpose) returns a matrix in which each element (row, column) is swapped with the corresponding element (column, row) of matrix.

matrix T

Accessing Matrix Dimensions with dim

dim (dimension) returns a list containing the dimensions (rows columns) of matrix.

dim(matrix)
Note: \(\text{dim}(\text{matrix}) \rightarrow L_nL_n(1) \) returns the number of rows. \(\text{dim}(\text{matrix}) \rightarrow L_nL_n(2) \) returns the number of columns.

Creating a Matrix with \(\text{dim}(\cdot) \)

Use \(\text{dim}(\cdot) \) with \(\text{STO}^* \) to create a new \text{matrixname} of dimensions \(\text{rows} \times \text{columns} \) with 0 as each element.

\[
\{\text{rows}, \text{columns}\} \rightarrow \text{dim}(\text{matrixname})
\]

Redimensioning a Matrix with \(\text{dim}(\cdot) \)

Use \(\text{dim}(\cdot) \) with \(\text{STO}^* \) to redimension an existing \text{matrixname} to dimensions \(\text{rows} \times \text{columns} \). The elements in the old \text{matrixname} that are within the new dimensions are not changed. Additional created elements are zeros. Matrix elements that are outside the new dimensions are deleted.

\[
\{\text{rows}, \text{columns}\} \rightarrow \text{dim}(\text{matrixname})
\]

\text{Fill}(\cdot)

\text{Fill}(\cdot) \ \text{stores value} \ \text{to every element in matrixname}.

\text{Fill(value,matrixname)}

\[
\text{Fill}(5, [E]) \rightarrow \text{Done}
\]

\[
[E] \rightarrow \begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix}
\]

\text{identity}(\cdot)

\text{identity}(\cdot) \ \text{returns the identity matrix of dimension} \ \text{rows} \times \text{columns}.

\text{identity(dimension)}
randM()

randM(create random matrix) returns a $rows \times columns$ random matrix of integers ≥ -9 and ≤ 9. The seed value stored to the rand function controls the values (Chapter 2).

randM(rows,columns)

\[
\begin{bmatrix}
0 & 0 \\
7 & 8
\end{bmatrix}
\]

augment()

augment(appends matrixA to matrixB as new columns. matrixA and matrixB both must have the same number of rows.

augment(matrixA,matrixB)

\[
\begin{bmatrix}
\frac{1}{3} & 2 \\
\frac{7}{12} & 4
\end{bmatrix}
\text{ augment(} \begin{bmatrix}
\frac{1}{3} & 2 \\
\frac{7}{12} & 4
\end{bmatrix}\text{)}
\]

Matr\textbullet list()

Matr\textbullet list(matrix stored to list) fills each listname with elements from each column in matrix. Matr\textbullet list(ignores extra listname arguments. Likewise, Matr\textbullet list(ignores extra matrix columns.

Matr\textbullet list(matrix,listnameA,...,listname n)

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}
\text{ Matr\textbullet list(} \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}\text{)}
\]

L1	(1 4)
L2	(2 5)
L3	(3 6)
Matr\textbullet list(also fills a listname with elements from a specified column\# in matrix. To fill a list with a specific column from matrix, you must enter column\# after matrix.

\textbf{Matr\textbullet list(matrix, column\#, listname)}

\begin{align*}
\text{Matr\textbullet list([A], 3)} & \rightarrow [1 \ 2 \ 3] \\
& \text{done}
\end{align*}

\textbf{List\textbullet matr(}

\textbf{List\textbullet matr(} (lists stored to matrix) fills \textit{matrixname} column by column with the elements from each list. If dimensions of all lists are not equal, \textbf{List\textbullet matr(} fills each extra \textit{matrixname} row with 0. Complex lists are not valid.

\textbf{List\textbullet matr(} listA, ..., list n, matrixname)

\begin{align*}
\{1, 2, 3\} & \rightarrow [1 \ 2 \ 3] \\
\{4, 5, 6\} & \rightarrow [4 \ 5 \ 6] \\
\{7, 8, 9\} & \rightarrow [7 \ 8 \ 9]
\end{align*}

\textbf{cumSum(}

\textbf{cumSum(} returns cumulative sums of the elements in matrix, starting with the first element. Each element is the cumulative sum of the column from top to bottom.

\textbf{cumSum(matrix)}

\begin{align*}
[D] & \rightarrow [1 \ 2] \\
& \rightarrow [4 \ 6] \\
& \rightarrow [9 \ 12]
\end{align*}

\textbf{Row Operations}

\textbf{MATRX MATH} menu items A through F are row operations. You can use a row operation in an expression. Row operations do not change matrix in memory. You can enter all row numbers and values as expressions. You can select the matrix from the \textbf{MATRX NAMES} menu.
ref(, rref()

ref((row-echelon form) returns the row-echelon form of a real matrix. The number of columns must be greater than or equal to the number of rows.

text

rref((reduced row-echelon form) returns the reduced row-echelon form of a real matrix. The number of columns must be greater than or equal to the number of rows.

rref(matrix)

rowSwap(, row+()

rowSwap(returns a matrix. It swaps rowA and rowB of matrix.

rowSwap(matrix, rowA, rowB)

row+() (row addition) returns a matrix. It adds rowA and rowB of matrix and stores the results in rowB.

row+(matrix, rowA, rowB)
row

row (row multiplication) returns a matrix. It multiplies *row* of *matrix* by *value* and stores the results in *row*.

row(value,matrix,row)

row+

row+ (row multiplication and addition) returns a matrix. It multiplies *row* of *matrix* by *value*, adds it to *rowB*, and stores the results in *rowB*.

row+(value,matrix,rowA,rowB)

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix} \times 1.1 = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix} \\
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix} + 3 = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}
\]
Chapter 11: Lists

Getting Started: Generating a Sequence

Getting Started is a fast-paced introduction. Read the chapter for details.

Calculate the first eight terms of the sequence $1/A^2$. Store the results to a user-created list. Then display the results in fraction form. Begin this example on a blank line on the home screen.

1. Press `2nd` [LIST] \Rightarrow to display the LIST OPS menu.

2. Press 5 to select 5:seq(, which opens a wizard to assist in the entry of the syntax.

3. Press $1 \cdot A^2 \div A \cdot 1^8 \div 1$ to enter the sequence.
 Press \Rightarrow, to select Paste, and press ENTER to paste the seq(to the current cursor location.

4. Press $STOP$, and then press `2nd` [A-LOCK] to turn on alpha-lock. Press [S][E][Q], and then press ALPHA to turn off alpha-lock. Press 1 to complete the list name.
 Note: Since the seq(command creates a list, you can name give the list a name up to five characters long.

5. Press ENTER to generate the list and store it in SEQ1. The list is displayed on the home screen. An ellipsis (...) indicates that the list continues beyond the viewing window. Press \Rightarrow repeatedly (or press and hold \Rightarrow) to scroll the list and view all the list elements.
6. Press 2nd [LIST] to display the LIST NAMES menu. Press 7 to select 7:SEQ1 to paste lSEQ1 to the current cursor location. (If SEQ1 is not item 7 on your LIST NAMES menu, move the cursor to SEQ1 before you press [ENTER].)

7. Press MATRX to display the MATRX menu. Press 2 to select 2:Dec, which pastes Dec to the current cursor location.

8. Press [ENTER] to show the sequence in decimal form. Press [+] repeatedly (or press and hold [÷]) to scroll the list and view all the list elements.

Naming Lists

Using TI-84 Plus List Names L1 through L6

The TI-84 Plus has six list names in memory: L1, L2, L3, L4, L5, and L6. The list names L1 through L6 are the second functions of 1 through 6. To paste one of these names to a valid screen, press 2nd, and then press the appropriate key. L1 through L6 are stored in stat list editor columns 1 through 6 when you reset memory.

Creating a List Name on the Home Screen

To create a list name on the home screen, follow these steps.

1. Press 2nd [1], enter one or more list elements, and then press 2nd [1]. Separate list elements with commas. List elements can be real numbers, complex numbers, or expressions.

2. Press [STOP].

3. Press [ALPHA] [letter from A to Z or 0] to enter the first letter of the name.

4. Enter zero to four letters, 0, or numbers to complete the name.

5. Press [ENTER]. The list is displayed on the next line. The list name and its elements are stored in memory. The list name becomes an item on the LIST NAMES menu.

Note: If you want to view a user-created list in the stat list editor, you must retrieve the list in the stat list editor (Chapter 12).
You also can create a list name in these four places.

- At the **Name** prompt in the stat list editor
- At an **Xlist**, **Ylist**, or **Data List** prompt in the stat plot editor
- At a **List**, **List1**, **List2**, **Freq**, **Freq1**, **Freq2**, **XList**, or **YList** prompt in the inferential stat editors
- On the home screen using **SetUpEditor**

You can create as many list names as your TI-84 Plus memory has space to store.

Storing and Displaying Lists

Storing Elements to a List

You can store list elements in either of two ways.

- Use brackets and **STO** on the home screen.

\[
\begin{bmatrix}
4+2i, & 5-3i, & L_8, \\
4+2i, & 5-3i
\end{bmatrix}
\]

- Use the stat list editor (Chapter 12).

The maximum dimension of a list is 999 elements.

Note: When you store a complex number to a list, the entire list is converted to a list of complex numbers. To convert the list to a list of real numbers, display the home screen, and then enter `real(listname)`

Displaying a List on the Home Screen

To display the elements of a list on the home screen, enter the name of the list (preceded by **L**, if necessary), and then press **ENTER**. An ellipsis indicates that the list continues beyond the viewing window. Press **[** repeatedly (or press and hold **[**) to scroll the list and view all the list elements.

\[
L_1
\begin{bmatrix}
2, & 5, & 10
\end{bmatrix}
\]

\[
L_2
\begin{bmatrix}
2.154, & 58.47, & 9,...
\end{bmatrix}
\]

Copying One List to Another

To copy a list, store it to another list.

\[
\begin{bmatrix}
1, & 2, & 3, & 4
\end{bmatrix}
\]

\[
\begin{bmatrix}
1, & 2, & 3, & 4
\end{bmatrix}
\]
Accessing a List Element

You can store a value to or recall a value from a specific list \textit{element}. You can store to any element within the current list dimension or one element beyond.

\[\text{listname} (\text{element})\]

Deleting a List from Memory

To delete lists from memory, including L1 through L6, use the \textbf{MEMORY MANAGEMENT/DELETE} secondary menu (Chapter 18). Resetting memory restores L1 through L6. Removing a list from the stat list editor does not delete it from memory.

Using Lists in Graphing

To graph a family of curves, you can use lists (Chapter 3) or the Transformation Graphing App.

Entering List Names

Using the \textbf{LIST NAMES} Menu

To display the \textbf{LIST NAMES} menu, press \[\text{Y=}\] [LIST]. Each item is a user-created list name except for L1 through L6. \textbf{LIST NAMES} menu items are sorted automatically in alphanumerical order. Only the first 10 items are labeled, using 1 through 9, then 0. To jump to the first list name that begins with a particular alpha character or 0, press \[\text{ALPHA}\] [letter from A to Z or 0].

\begin{verbatim}
NAMES | OPS | MATH
1: SORT 2: TEST
\end{verbatim}

\textbf{Note:} From the top of a menu, press \[\text{A}\] to move to the bottom. From the bottom, press \[\text{X}\] to move to the top.

When you select a list name from the \textbf{LIST NAMES} menu, the list name is pasted to the current cursor location.

- The list name symbol \(\{\) precedes a list name when the name is pasted where non-list name data also is valid, such as the home screen.

\begin{verbatim}
\{TEST\} \{1 2 3 4\}
\end{verbatim}
• The \(\mathbf{l} \) symbol does not precede a list name when the name is pasted where a list name is the only valid input, such as the stat list editor’s Name= prompt or the stat plot editor’s XList: and YList: prompts.

Entering a User-Created List Name Directly

To enter an existing list name directly, follow these steps.

1. Press \(\text{2nd} \) [LIST] \(\mathbf{B} \) to display the LIST OPS menu.
2. Select \(\mathbf{B}:\mathbf{l} \), which pastes \(\mathbf{l} \) to the current cursor location. \(\mathbf{l} \) is not always necessary.

Note: You also can paste \(\mathbf{l} \) to the current cursor location from the CATALOG.

3. Enter the characters that comprise the list name.

\[\text{LT23} \]

Attaching Formulas to List Names

Attaching a Formula to a List Name

You can attach a formula to a list name so that each list element is a result of the formula. When executed, the attached formula must resolve to a list.

When anything in the attached formula changes, the list to which the formula is attached is updated automatically.

• When you edit an element of a list that is referenced in the formula, the corresponding element in the list to which the formula is attached is updated.
• When you edit the formula itself, all elements in the list to which the formula is attached are updated.

For example, the first screen below shows that elements are stored to \(\mathbf{L3} \), and the formula \(\mathbf{L3+10} \) is attached to the list name \(\mathbf{lADD10} \). The quotation marks designate the formula to be attached to \(\mathbf{lADD10} \). Each element of \(\mathbf{lADD10} \) is the sum of an element in \(\mathbf{L3} \) and 10.

\[
\begin{align*}
\{1,2,3\} + \mathbf{L3} &= \{1,2,3\} \\
\"L3+10\" + \mathbf{lADD10} &= \{11,12,13\} \\
\mathbf{lADD10} &= \{11,12,13\}
\end{align*}
\]

The next screen shows another list, \(\mathbf{L4} \). The elements of \(\mathbf{L4} \) are the sum of the same formula that is attached to \(\mathbf{L3} \). However, quotation marks are not entered, so the formula is not attached to \(\mathbf{L4} \).
On the next line, \(-6 \rightarrow L3(1) \cdot L3 \) changes the first element in \(L3 \) to \(-6\), and then redispaly \(L3 \).

\[
\begin{align*}
L3+10 \rightarrow L4 & \rightarrow \{4 \ 8 \ 9\} \\
-6 \cdot L3(1) \cdot L3 & \rightarrow \{-6 \ 2 \ 3\}
\end{align*}
\]

The last screen shows that editing \(L3 \) updated \(L\text{ADD10} \), but did not change \(L4 \). This is because the formula \(L3+10 \) is attached to \(L\text{ADD10} \), but it is not attached to \(L4 \).

\[
\begin{align*}
L\text{ADD10} & \rightarrow \{4 \ 12 \ 13\} \\
L4 & \rightarrow \{11 \ 12 \ 13\}
\end{align*}
\]

Note: To view a formula that is attached to a list name, use the stat list editor (Chapter 12).

Attaching a Formula to a List on the Home Screen or in a Program

To attach a formula to a list name from a blank line on the home screen or from a program, follow these steps.

1. Press \(\text{ALPHA} \) \([\cdot \) \(\text{ALPHA} \) \([\cdot \)
 - enter the formula (which must resolve to a list), and press \(\text{ALPHA} \) \([\cdot \) \(\text{ALPHA} \) \([\cdot \) \(\text{ALPHA} \) \([\cdot \) \(\text{ALPHA} \) \([\cdot \)
 - **Note:** When you include more than one list name in a formula, each list must have the same dimension.
2. Press \(\text{STOP} \).
3. Enter the name of the list to which you want to attach the formula.
 - Press \(\text{2nd} \) \(\text{L1} \) through \(\text{L6} \).
 - Press \(\text{2nd} \) \(\text{LIST} \) and select a user-created list name from the \(\text{LIST NAMES} \) menu.
 - Enter a user-created list name directly using \(\text{L} \).
4. Press \(\text{ENTER} \).

\[
\begin{align*}
\{4;8;9\} \cdot L1 & \rightarrow \{4 \ 8 \ 9\} \\
"5\cdot L1 " \rightarrow L\text{LIST} & \rightarrow \{20 \ 40 \ 45\}
\end{align*}
\]

Note: The stat list editor displays a formula-lock symbol next to each list name that has an attached formula. Chapter 12 describes how to use the stat list editor to attach formulas to lists, edit attached formulas, and detach formulas from lists.

Detaching a Formula from a List

You can detach (clear) an attached formula from a list in several ways.

For example:

- Enter " " \(\rightarrow \text{listname} \) on the home screen.
• Edit any element of a list to which a formula is attached.
• Use the stat list editor (Chapter 12).
• Use ClrList or ClrAllList to detach a formula from a list (Chapter 18).

Using Lists in Expressions

You can use lists in an expression in any of three ways. When you press [ENTER], any expression is evaluated for each list element, and a list is displayed.

• Use L1–L6 or any user-created list name in an expression.

\[
\{2,5,10\}+L1
\]

\[
{\begin{array}{c}
20/L1 \\
{\{10,4,2\}} \\
\end{array}}
\]

• Enter the list elements directly.

\[
20\{2,5,10\}L1
\]

\[
{\begin{array}{c}
{\{10,4,2\}} \\
\end{array}}
\]

• Use [2nd] [RCL] to recall the contents of the list into an expression at the cursor location (Chapter 1).

\[
\text{Rcl L1} \rightarrow \{\{2,5,10\}, \{10,4,2\}\}
\]

Note: You must paste user-created list names to the \textit{Rcl} prompt by selecting them from the \textbf{LIST NAMES} menu. You cannot enter them directly using \texttt{L}.

Using Lists with Math Functions

You can use a list to input several values for some math functions. See Appendix A specify for information about where a list is valid. The function is evaluated for each list element, and a list is displayed.

• When you use a list with a function, the function must be valid for every element in the list. In graphing, an invalid element, such as \(-1\) in \(\sqrt{\{1,0,-1\}}\), is ignored.

\[
\{\{1,0,-1\}\}
\]

This returns an error.

\[
\text{Plot1 Plot2 Plot3} \rightarrow \{\{1,0,-1\}\}
\]

This graphs \(X^\sqrt{1}\) and \(X^\sqrt{0}\), but skips \(X^\sqrt{-1}\).

• When you use two lists with a two-argument function, the dimension of each list must be the same. The function is evaluated for corresponding elements.
When you use a list and a value with a two-argument function, the value is used with each element in the list.

\[
\begin{align*}
\{(1,2,3)\} + \{(4,5,6)\} &= \{(5,7,9)\} \\
\{(1,2,3)\} + 4 &= \{(5,6,7)\}
\end{align*}
\]

LIST OPS Menu

To display the **LIST OPS** menu, press `[2nd] [LIST] ➤`.

NAMES OPS MATH

1: **SortA(** Sorts lists in ascending order.
2: **SortD(** Sorts lists in descending order.
3: **dim(** Sets the list dimension.
4: **Fill(** Fills all elements with a constant.
5: **seq(** Creates a sequence.
6: **cumSum(** Returns a list of cumulative sums.
7: **ΔList(** Returns difference of successive elements.
8: **Select(** Selects specific data points.
9: **augment(** Concatenates two lists.
0: **List»matr(** Stores a list to a matrix.
A: **Matr»list(** Stores a matrix to a list.
B: **L** Designates the list-name data type.

SortA(, SortD(

SortA((sort ascending) sorts list elements from low to high values. SortD((sort descending) sorts list elements from high to low values. Complex lists are sorted based on magnitude (modulus).

With one list, **SortA(** and **SortD(** sort the elements of **listname** and update the list in memory.

<table>
<thead>
<tr>
<th>SortA(listname)</th>
<th>SortD(listname)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{(5,6,4)} + {L}_3 \rightarrow {(5,6,4)}</td>
<td>SortD({L}_3) \rightarrow {(6,5,4)}</td>
</tr>
<tr>
<td>{L}_3 \rightarrow Done</td>
<td>{L}_3 \rightarrow Done</td>
</tr>
</tbody>
</table>
With two or more lists, \texttt{SortA} and \texttt{SortD} sort \texttt{keylistname}, and then sort each \texttt{dependlist} by placing its elements in the same order as the corresponding elements in \texttt{keylistname}. All lists must have the same dimension.

\texttt{SortA(}\texttt{keylistname,dependlist1,dependlist2,..,dependlist n)}
\texttt{SortD(}\texttt{keylistname,dependlist1,dependlist2,..,dependlist n)}

\begin{verbatim}
\begin{tabular}{c|c}
 \text{L4} & \{5, 6, 4\} \\
 \text{L5} & \{1, 2, 3\} \\
\end{tabular} & \begin{tabular}{c|c}
 \text{L4} & \text{Done} \\
 \text{L5} & \{4, 5, 6\} \\
\end{tabular}
\end{verbatim}

\begin{itemize}
 \item In the example, 5 is the first element in \texttt{L4}, and 1 is the first element in \texttt{L5}. After \texttt{SortA(L4,L5)}, 5 becomes the second element of \texttt{L4}, and likewise, 1 becomes the second element of \texttt{L5}.
 \item \texttt{SortA} and \texttt{SortD} are the same as \texttt{SortA} and \texttt{SortD} on the \texttt{STAT EDIT} menu (Chapter 12).
 \item You cannot sort a locked list.
\end{itemize}

\textbf{Using \texttt{dim(} to Find List Dimensions}

\texttt{dim(} (dimension) returns the length (number of elements) of \texttt{list}.

\texttt{dim(list)}

\begin{verbatim}
\begin{tabular}{c|c}
 \text{dim(\{1,3,5,7\})} & 4
\end{tabular}
\end{verbatim}

\textbf{Using \texttt{dim(} to Create a List}

You can use \texttt{dim(} with \texttt{STO} to create a new \texttt{listname} with dimension \texttt{length} from 1 to 999. The elements are zeros.

\texttt{length \rightarrow dim(listname)}

\begin{verbatim}
\begin{tabular}{c|c}
 \text{dim(L2)} & 3 \\
 \text{L2} & \{0 \, 0 \, 0\}
\end{tabular}
\end{verbatim}

\textbf{Using \texttt{dim(} to Redimension a List}

You can use \texttt{dim(} with \texttt{STO} to redimension an existing \texttt{listname} to dimension \texttt{length} from 1 to 999.

\begin{itemize}
 \item The elements in the old \texttt{listname} that are within the new dimension are not changed.
 \item Extra list elements are filled by 0.
 \item Elements in the old list that are outside the new dimension are deleted.
\end{itemize}
length → \text{dim}(\text{listname})

\[\{4,8,6\} \rightarrow L_1 \]
\[4 \rightarrow \text{dim}(L_1) \]
\[L_1 \rightarrow \{4,8,6\} \]
\[3 \rightarrow \text{dim}(L_1) \]
\[L_1 \rightarrow \{4,8,6\} \]

\text{Fill(}

\text{Fill(} \text{replaces each element in } \text{listname} \text{ with } \text{value}.\n
\text{Fill(} \text{value,} \text{listname)}

\[\{3,4,5\} \rightarrow L_3 \]
\[\text{Fill(} \{3,4,5\}, L_3 \rightarrow \text{Done} \]
\[L_3 \rightarrow \{3,4,5\} \]
\[\text{Fill(} \{4+3i, L_3 \rightarrow \text{Done} \]
\[L_3 \rightarrow \{4+3i, 4+3i, 4+3i\} \]

\textbf{Note:} \text{dim(} \text{and Fill(} \text{are the same as } \text{dim(} \text{and Fill(} \text{on the } \text{MATRIX MATH} \text{ menu (Chapter 10).}\n
\text{seq(}

\text{seq(} \text{sequence} \text{returns a list in which each element is the result of the evaluation of } \text{expression} \text{ with regard to } \text{variable} \text{ for the values ranging from } \text{begin} \text{ to } \text{end} \text{ at steps of } \text{increment}. \text{variable} \text{ need not be defined in memory. } \text{increment} \text{ can be negative; the default value for } \text{increment} \text{ is 1. } \text{seq(} \text{is not valid within } \text{expression}. \text{Complex lists are not valid.}\n
A wizard will open to assist the entry of the syntax.\n
\textbf{Note:} \text{seq(} \text{is the only function in } \text{LIST OPS} \text{ that has a wizard.}\n
\text{seq(} \text{expression,}\text{variable,}\text{begin,}\text{end[,}\text{increment]}\)

\text{cumSum(}

\text{cumSum(} \text{cumulative sum} \text{returns the cumulative sums of the elements in } \text{list,} \text{starting with the first element}. \text{list} \text{elements can be real or complex numbers.}\n
\text{cumSum(} \text{list)\n
Chapter 11: Lists 170
\textbf{ΔList(} \\

\textbf{ΔList(} \text{returns a list containing the differences between consecutive elements in} \text{list. ΔList subtracts the first element in} \text{list from the second element, subtracts the second element from the third, and so on. The list of differences is always one element shorter than the original} \text{list. list elements can be a real or complex numbers.} \\

\textbf{ΔList(} \text{list} \\

\text{\{20, 30, 45, 70\} \rightarrow \\{10, 15, 25\}} \\

\textbf{Select(} \\

\textbf{Select(} \text{selects one or more specific data points from a scatter plot or xyLine plot (only), and then stores the selected data points to two new lists,} \text{xlistname} \text{and} \text{ylistname. For example, you can use Select(} \text{to select and then analyze a portion of plotted CBL 2™/CBL™ or CBR™ data.} \\

\textbf{Select(} \text{xlistname, ylistname} \\

\textbf{Note:} Before you use \textbf{Select(}, you must have selected (turned on) a scatter plot or xyLine plot. Also, the plot must be displayed in the current viewing window. \\

\textbf{Before Using Select(} \\

\text{Before using Select(, follow these steps.} \\

1. Create two list names and enter the data. \\
2. Turn on a stat plot, select \text{\(\text{(scatter plot) or} \text{\(\text{\textcopyright (xyLine), and enter the two list names for} \text{Xlist:} \text{and Ylist:} \text{(Chapter 12).} \\
3. Use \textbf{ZoomStat} to plot the data (Chapter 3).} \\

\text{\{1, 2, 3, 4, 5, 6, 7\} \rightarrow \{1, 2, 3, 4, 5, 6, 7\} \rightarrow \{15, 15, 15, 15, 15, 15, 11\} \rightarrow \{15, 15, 15, 15, 15, 11\} \rightarrow \text{MathPrint™}
Using Select(to Select Data Points from a Plot

To select data points from a scatter plot or xyLine plot, follow these steps.

1. Press \(\text{2nd} \) [LIST] \(\boxed{8} \) to select \(8: \text{Select(} \) from the \text{LIST OPS} menu. \text{Select(} \) is pasted to the home screen.

2. Enter \(x_{\text{listname}} \), press \(\boxed{\downarrow} \), enter \(y_{\text{listname}} \), and then press \(\boxed{\rightarrow} \) to designate list names into which you want the selected data to be stored.

\[
\text{Select}(L_1,L_2)\]

3. Press \(\boxed{\text{ENTER}} \). The graph screen is displayed with \text{Left Bound?} in the bottom-left corner.

4. Press \(\boxed{\uparrow} \) or \(\boxed{\downarrow} \) (if more than one stat plot is selected) to move the cursor onto the stat plot from which you want to select data points.

5. Press \(\boxed{\downarrow} \) and \(\boxed{\uparrow} \) to move the cursor to the stat plot data point that you want as the left bound.

6. Press \(\boxed{\text{ENTER}} \). A \(\boxed{\rightarrow} \) indicator on the graph screen shows the left bound. Right Bound? is displayed in the bottom-left corner.
7. Press | or ~ to move the cursor to the stat plot point that you want for the right bound, and then press \(\text{ENTER} \).

The x-values and y-values of the selected points are stored in \(xlistname \) and \(ylistname \). A new stat plot of \(xlistname \) and \(ylistname \) replaces the stat plot from which you selected data points. The list names are updated in the stat plot editor.

\[\begin{align*}
L1 & : 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 9.* \\
L2 & : 13 \ 11 \ 9 \ 7 \ 5 \ 3 \\
\end{align*} \]

\[\begin{align*}
\text{Xlist: L1} \\
\text{Ylist: L2} \\
\text{Mark: •} \\
\end{align*} \]

\textbf{Note:} The two new lists (\(xlistname \) and \(ylistname \)) will include the points you select as left bound and right bound. Also, \(\text{left-bound x-value} \leq \text{right-bound x-value} \) must be true.

\textbf{augment(} \\
\textbf{augment(} \text{concatenates the elements of listA and listB. The list elements can be real or complex numbers.} \\
\text{augment(listA, listB)} \\

\textbf{List\text{matr(} \\
\textbf{List\text{matr(} (lists stored to matrix) fills matrixname column by column with the elements from each list. If the dimensions of all lists are not equal, then List\text{matr(} fills each extra matrixname row with 0. Complex lists are not valid.}
List(matr(list1, list2, ..., list n, matrixname)

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
\end{bmatrix}
\]

Matr(list(matrix stored to lists) fills each listname with elements from each column in matrix. If the number of listname arguments exceeds the number of columns in matrix, then Matr(list ignores extra listname arguments. Likewise, if the number of columns in matrix exceeds the number of listname arguments, then Matr(list ignores extra matrix columns.

Matr(list(matrix, listname1, listname2, ..., listname n)

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
L_1 \\
L_2 \\
\end{bmatrix}
\]

Matr(list also fills a listname with elements from a specified column# in matrix. To fill a list with a specific column from matrix, you must enter a column# after matrix.

Matr(list(matrix, column#, listname)

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
L_1 \\
\end{bmatrix}
\]

l preceding one to five characters identifies those characters as a user-created listname. listname may comprise letters, 0, and numbers, but it must begin with a letter from A to Z or 0.

Listname

Generally, l must precede a user-created list name when you enter a user-created list name where other input is valid, for example, on the home screen. Without the l, the TI-84 Plus may misinterpret a user-created list name as implied multiplication of two or more characters.

l need not precede a user-created list name where a list name is the only valid input, for example, at the Name= prompt in the stat list editor or the Xlist: and Ylist: prompts in the stat plot editor. If you enter l where it is not necessary, the TI-84 Plus will ignore the entry.
LIST MATH Menu

To display the LIST MATH menu, press [2nd] [LIST] [4].

<table>
<thead>
<tr>
<th>NAMES</th>
<th>OPS</th>
<th>MATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>min(</td>
<td>Returns minimum element of a list.</td>
</tr>
<tr>
<td>2:</td>
<td>max(</td>
<td>Returns maximum element of a list.</td>
</tr>
<tr>
<td>3:</td>
<td>mean(</td>
<td>Returns mean of a list.</td>
</tr>
<tr>
<td>4:</td>
<td>median(</td>
<td>Returns median of a list.</td>
</tr>
<tr>
<td>5:</td>
<td>sum(</td>
<td>Returns sum of elements in a list.</td>
</tr>
<tr>
<td>6:</td>
<td>prod(</td>
<td>Returns product of elements in list.</td>
</tr>
<tr>
<td>7:</td>
<td>stdDev(</td>
<td>Returns standard deviation of a list.</td>
</tr>
<tr>
<td>8:</td>
<td>variance(</td>
<td>Returns the variance of a list.</td>
</tr>
</tbody>
</table>

min(, max(

`min(` (minimum) and `max(` (maximum) return the smallest or largest element of `listA`. If two lists are compared, it returns a list of the smaller or larger of each pair of elements in `listA` and `listB`. For a complex list, the element with smallest or largest magnitude (modulus) is returned.

\[
\text{min}(\text{listA}[\text{listB}]) \\
\text{max}(\text{listA}[\text{listB}])
\]

```
\begin{array}{ll}
\text{min}(\{1,2,3\},\{3,2\}) & \text{min}(\{1,2,3\},\{3,2\}) \\
\{1,2,3\} & \{1,2,1\}
\end{array}
```

MathPrint™

```
\begin{array}{ll}
\text{max}(\{1,2,3\},\{3,2\}) & \text{max}(\{1,2,3\},\{3,2\}) \\
\{3,2\} & \{3,2\}
\end{array}
```

Classic

Note: `min(` and `max(` are the same as `min(` and `max(` on the MATH NUM menu.

mean(, median(

`mean(` returns the mean value of `list`. `median(` returns the median value of `list`. The default value for `freqlist` is 1. Each `freqlist` element counts the number of consecutive occurrences of the corresponding element in `list`. Complex lists are not valid.
mean(list(freqlist))
median(list(freqlist))

\[
\begin{align*}
\text{mean}\{1,2,3\} & = 2 \\
\text{median}\{1,2,3\} & = 2 \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>MathPrint™ Classic</th>
</tr>
</thead>
</table>

sum(, prod()

\text{sum} (summation) returns the sum of the elements in list. start and end are optional; they specify a range of elements. list elements can be real or complex numbers.

\text{prod} returns the product of all elements of list. start and end elements are optional; they specify a range of list elements. list elements can be real or complex numbers.

\[
\begin{align*}
\text{sum} & \quad \text{prod} \\
\left\{1,2,5,8,10\right\} & \left\{1,2,5,8,10\right\} \\
\text{sum}(L1) & = 26 \\
\text{prod}(L1) & = 8000 \\
\end{align*}
\]

Sums and Products of Numeric Sequences

You can combine \text{sum} or \text{prod} with seq to obtain:

\[
\sum_{x=lower}^{upper} \text{expression}(x) \quad \prod_{x=lower}^{upper} \text{expression}(x)
\]

To evaluate \(\sum 2^{(N-1)}\) from \(N=1\) to 4:

\[
\text{sum(seq}(2^{(N-1)}, N, 1, 4, 1)\)
\]

\[
15
\]

\text{stdDev}(, \text{variance}()

\text{stdDev} returns the standard deviation of the elements in list. The default value for freqlist is 1. Each freqlist element counts the number of consecutive occurrences of the corresponding element in list. Complex lists are not valid.
\textbf{stdDev}\{list\hspace{1mm},freqlist\}

\begin{align*}
\text{stdDev}\{1,2,5, -6\} &= 3.937003937 \\
\text{stdDev}\{1,2,5, -6\} &= 3.937003937 \\
\text{MathPrint}^\text{Tm} & \text{ Classic}
\end{align*}

\textbf{variance}(\textit{list}) returns the variance of the elements in \textit{list}. The default value for \textit{freqlist} is 1. Each \textit{freqlist} element counts the number of consecutive occurrences of the corresponding element in \textit{list}. Complex lists are not valid.

\textbf{variance}(\textit{list}\hspace{1mm},freqlist\})

\begin{align*}
\text{variance}\{(1,2,5)\} &= 15.5 \\
\text{variance}\{(1,2,5, -6,3, -2)\} &= 15.5 \\
\text{MathPrint}^\text{Tm} & \text{ Classic}
\end{align*}
Chapter 12: Statistics

Getting Started: Pendulum Lengths and Periods

Getting Started is a fast-paced introduction. Read the chapter for details.

A group of students is attempting to determine the mathematical relationship between the length of a pendulum and its period (one complete swing of a pendulum). The group makes a simple pendulum from string and washers and then suspends it from the ceiling. They record the pendulum’s period for each of 12 string lengths.*

<table>
<thead>
<tr>
<th>Length (cm)</th>
<th>Time (sec)</th>
<th>Length (cm)</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>0.51</td>
<td>24.4</td>
<td>1.01</td>
</tr>
<tr>
<td>11.0</td>
<td>0.68</td>
<td>26.6</td>
<td>1.08</td>
</tr>
<tr>
<td>13.2</td>
<td>0.73</td>
<td>30.5</td>
<td>1.13</td>
</tr>
<tr>
<td>15.0</td>
<td>0.79</td>
<td>34.3</td>
<td>1.26</td>
</tr>
<tr>
<td>18.0</td>
<td>0.88</td>
<td>37.6</td>
<td>1.28</td>
</tr>
<tr>
<td>23.1</td>
<td>0.99</td>
<td>41.5</td>
<td>1.32</td>
</tr>
</tbody>
</table>

*This example is quoted and adapted from Contemporary Precalculus Through Applications, by the North Carolina School of Science and Mathematics, by permission of Janson Publications, Inc., Dedham, MA. 1-800-322-MATH. © 1992. All rights reserved.

1. Press MODE △ △ △ ENTER to set Func graphing mode.

2. Press STAT 5 to select 5:SetUpEditor. SetUpEditor is pasted to the home screen. Press ENTER. This removes lists from stat list editor columns 1 through 20, and then stores lists L1 through L6 in columns 1 through 6.

 Note: Removing lists from the stat list editor does not delete them from memory.

3. Press STAT 1 to select 1:Edit from the STAT EDIT menu. The stat list editor is displayed. If elements are stored in L1 and L2, press △ to move the cursor onto L1, and then press CLEAR ENTER △ △ CLEAR ENTER to clear both lists. Press △ to move the rectangular cursor back to the first row in L1.
4. Press 6 5 [ENTER] to store the first pendulum string length (6.5 cm) in L1. The rectangular cursor moves to the next row. Repeat this step to enter each of the 12 string length values in the table.

5. Press 4 to move the rectangular cursor to the first row in L2.
Press 51 [ENTER] to store the first time measurement (.51 sec) in L2. The rectangular cursor moves to the next row. Repeat this step to enter each of the 12 time values in the table.

6. Press [Y] to display the Y= editor.
If necessary, press [CLEAR] to clear the function Y1. As necessary, press [ENTER] and 4 to turn off Plot1, Plot2, and Plot3 from the top line of the Y= editor (Chapter 3). As necessary, press , and [ENTER] to deselect functions.

7. Press [2nd] [STAT PLOT] 1 to select 1:Plot1 from the STAT PLOTS menu. The stat plot editor is displayed for plot 1.

9. Press [ZOOM] 9 to select 9:ZoomStat from the ZOOM menu. The window variables are adjusted automatically, and plot 1 is displayed. This is a scatter plot of the time-versus-length data.

Since the scatter plot of time-versus-length data appears to be approximately linear, fit a line to the data.

10. Press STAT [enter] 4 to select 4:LinReg(ax+b) (linear regression model) from the STAT CALC menu.
11. Fill in each argument in the stat wizard displayed. Press \texttt{2nd L1} (for \texttt{Xlist:}), and \texttt{2nd L2} (for \texttt{Ylist:}), Press \texttt{\textasciitilde \textasciitilde} (to \texttt{Store ReqEQ:}) and then press \texttt{ALPHA F4 ENTER} to paste \texttt{Y1}. Press \texttt{\textasciitilde} (to select Calculate).

12. Press \texttt{ENTER} to execute \texttt{LinReg(ax+b)}. The linear regression for the data in \texttt{L1} and \texttt{L2} is calculated. Values for \texttt{a} and \texttt{b} are displayed in a temporary result screen. The linear regression equation is stored in \texttt{Y1}. Residuals are calculated and stored automatically in the list name \texttt{RESID}, which becomes an item on the \texttt{LIST NAMES} menu.

\textbf{Note:}
- You can control the number of decimal places displayed by changing the decimal mode setting.
- The statistics reported are not stored in the history on the home screen.
- Press \texttt{VARS 5 \textasciitilde \textasciitilde \textasciitilde} to access the statistical variables.
- Press \texttt{CLEAR} to return to the home screen.

13. The stat wizard pastes the populated command in the home screen history for repeated use, if needed (press \texttt{CLEAR \textasciitilde \textasciitilde} to view the home screen history as show in the screen).

14. Press \texttt{GRAPH}. The regression line and the scatter plot are displayed.

The regression line appears to fit the central portion of the scatter plot well. However, a residual plot may provide more information about this fit.

15. Press \texttt{STAT 1} to select \texttt{1:Edit}. The stat list editor is displayed.

Press \texttt{\textasciitilde} and \texttt{\textasciitilde} to move the cursor onto \texttt{L3}.

Press \texttt{2nd INS}. An unnamed column is displayed in column 3; \texttt{L3}, \texttt{L4}, \texttt{L5}, and \texttt{L6} shift right one column. The \texttt{Name=} prompt is displayed in the entry line, and alpha-lock is on.
Notice that the first three residuals are negative. They correspond to the shortest pendulum string lengths in \(L_1 \). The next five residuals are positive, and three of the last four are negative. The latter correspond to the longer string lengths in \(L_1 \). Plotting the residuals will show this pattern more clearly.

20. Press \(\text{2nd} \) [STAT PLOT] 2 to select 2:Plot2 from the STAT PLOTS menu. The stat plot editor is displayed for plot 2.

21. Press \(\text{Y=} \) to display the Y= editor. Press \(\text{Enter} \) to move the cursor onto the \(= \) sign, and then press \(\text{Enter} \) to deselect \(Y_1 \). Press \(\text{Enter} \) to turn off plot 1.

22. Press \(\text{Zoom} \) 9 to select 9:ZoomStat from the ZOOM menu. The window variables are adjusted automatically, and plot 2 is displayed. This is a scatter plot of the residuals.
Notice the pattern of the residuals: a group of negative residuals, then a group of positive residuals, and then another group of negative residuals.

The residual pattern indicates a curvature associated with this data set for which the linear model did not account. The residual plot emphasizes a downward curvature, so a model that curves down with the data would be more accurate. Perhaps a function such as square root would fit. Try a power regression to fit a function of the form \(y = a \cdot x^b \).

23. Press \(\text{Y=} \) to display the \(Y= \) editor. Press \(\boxed{\text{CLEAR}} \) to clear the linear regression equation from \(Y1 \). Press \(\boxed{\text{ENTER}} \) to turn on plot 1. Press \(\boxed{\text{ENTER}} \) to turn off plot 2.

24. Press \(\boxed{\text{ZOOM}} \) \(9 \) to select \(9: \text{ZoomStat} \) from the \(\text{ZOOM} \) menu. The window variables are adjusted automatically, and the original scatter plot of time-versus-length data (plot 1) is displayed.

25. Press \(\boxed{\text{STAT}} \) \(\boxed{\alpha} \) \(\boxed{\text{A}} \) to select \(A: \text{PwrReg} \) from the \(\text{STAT CALC} \) menu. \(\text{PwrReg} \) is pasted to the home screen.

26. Press \(\boxed{\text{CALC}} \) \(\boxed{\text{A}} \) \(\boxed{\text{PwrReg}} \) to select \(A: \text{PwrReg} \) from the \(\text{STAT CALC} \) menu. \(\text{PwrReg} \) is pasted to the home screen. Press \(\boxed{\text{CALC}} \) \(\boxed{\text{A}} \) \(\boxed{\text{PwrReg}} \) to highlight \(\text{Calculate} \).

27. Press \(\boxed{\text{GRAPH}} \). The regression line and the scatter plot are displayed.
The new function \(y = 0.192x^{0.522} \) appears to fit the data well. To get more information, examine a residual plot.

28. Press \(\text{Y=} \) to display the \(Y= \) editor.
 Press \(\text{\(\uparrow \)} \text{ ENTER} \) to deselect \(Y1 \).
 Press \(\text{\(\uparrow \)} \text{ ENTER} \) to turn off plot 1. Press \(\text{\(\uparrow \)} \text{ ENTER} \) to turn on plot 2.
 \textbf{Note:} Step 19 defined plot 2 to plot residuals (\(\text{RESID} \)) versus string length (\(L1 \)).

29. Press \textit{ZOOM \(9 \)} to select \textit{9:ZoomStat} from the \textit{ZOOM} menu. The window variables are adjusted automatically, and plot 2 is displayed. This is a scatter plot of the residuals.

The new residual plot shows that the residuals are random in sign, with the residuals increasing in magnitude as the string length increases.

To see the magnitudes of the residuals, continue with these steps.

30. Press \textit{TRACE}.
 Press \(\text{\(\uparrow \)} \text{ and } \text{\(\downarrow \)} \) to trace the data. Observe the values for \(Y \) at each point.
 With this model, the largest positive residual is about 0.041 and the smallest negative residual is about -0.027. All other residuals are less than 0.02 in magnitude.

Now that you have a good model for the relationship between length and period, you can use the model to predict the period for a given string length. To predict the periods for a pendulum with string lengths of 20 cm and 50 cm, continue with these steps.

31. Press \textit{VARS \(\uparrow \)} \textit{1} to display the \textit{VARS Y-VARS FUNCTION} secondary menu, and then press \textit{1} to select \textit{1:Y1}. \(Y1 \) is pasted to the home screen.
 \textbf{Note:} You can also use the \textit{YVARS} (\text{\(\alpha \)} \text{[4]}) shortcut menu to select \(Y1 \).

32. Press \(\text{\(\downarrow \)} \text{ \(20 \)} \text{ ENTER} \) to enter a string length of 20 cm.
 Press \textit{ENTER} to calculate the predicted time of about 0.92 seconds.
 Based on the residual analysis, we would expect the prediction of about 0.92 seconds to be within about 0.02 seconds of the actual value.
33. Press \textit{2nd} [\texttt{ENTRY}] to recall the Last Entry.
 Press \textbf{\texttt{4 \times 4 \times 5}} to change the string length to 50 cm.

34. Press \texttt{ENTER} to calculate the predicted time of about 1.48 seconds.

 Since a string length of 50 cm exceeds the lengths in the data set, and since residuals appear to be increasing as string length increases, we would expect more error with this estimate.

\textbf{Note:} You also can make predictions using the table with the \texttt{TABLE SETUP} settings \texttt{Indpt:Ask} and \texttt{Depend:Auto} (Chapter 7).

\section*{Setting Up Statistical Analyses}

\subsection*{Using Lists to Store Data}

Data for statistical analyses is stored in lists, which you can create and edit using the stat list editor. The TI-84 Plus has six list variables in memory, \texttt{L1} through \texttt{L6}, to which you can store data for statistical calculations. Also, you can store data to list names that you create (Chapter 11).

\subsection*{Setting Up a Statistical Analysis}

To set up a statistical analysis, follow these steps. Read the chapter for details.

1. Enter the statistical data into one or more lists.
2. Plot the data.
3. Calculate the statistical variables or fit a model to the data.
4. Graph the regression equation for the plotted data.
5. Graph the residuals list for the given regression model.

\subsection*{Displaying the Stat List Editor}

The stat list editor is a table where you can store, edit, and view up to 20 lists that are in memory. Also, you can create list names from the stat list editor.

To display the stat list editor, press \texttt{STAT}, and then select \texttt{1:Edit} from the \texttt{STAT EDIT} menu.
The top line displays list names. L1 through L6 are stored in columns 1 through 6 after a memory reset. The number of the current column is displayed in the top-right corner.

The bottom line is the entry line. All data entry occurs on this line. The characteristics of this line change according to the current context.

The center area displays up to seven elements of up to three lists; it abbreviates values when necessary. The entry line displays the full value of the current element.

Using the Stat List Editor

Entering a List Name in the Stat List Editor

To enter a list name in the stat list editor, follow these steps.

1. Display the Name= prompt in the entry line in either of two ways.
 - Move the cursor onto the list name in the column where you want to insert a list, and then press [2nd] [INS]. An unnamed column is displayed and the remaining lists shift right one column.
 - Press ▲ until the cursor is on the top line, and then press ~ until you reach the unnamed column.

 Note: If list names are stored to all 20 columns, you must remove a list name to make room for an unnamed column.

 The Name= prompt is displayed and alpha-lock is on.

2. Enter a valid list name in any of four ways.
 - Select a name from the LIST NAMES menu (Chapter 11).
 - Enter L1, L2, L3, L4, L5, or L6 from the keyboard.
 - Enter an existing user-created list name directly from the keyboard.
 - Enter a new user-created list name.

3. Press [ENTER] or ▼ to store the list name and its elements, if any, in the current column of the stat list editor.
To begin entering, scrolling, or editing list elements, press \(\checkmark \). The rectangular cursor is displayed.

Note: If the list name you entered in step 2 already was stored in another stat list editor column, then the list and its elements, if any, move to the current column from the previous column. Remaining list names shift accordingly.

Creating a Name in the Stat List Editor

To create a name in the stat list editor, follow these steps.

1. Display the Name= prompt.
2. Press \[\text{letter from A to Z or } q \] to enter the first letter of the name. The first character cannot be a number.
3. Enter zero to four letters, \(\theta \), or numbers to complete the new user-created list name. List names can be one to five characters long.
4. Press \(\checkmark \) or \(\checkmark \) to store the list name in the current column of the stat list editor. The list name becomes an item on the LIST NAMES menu (Chapter 11).

Removing a List from the Stat List Editor

To remove a list from the stat list editor, move the cursor onto the list name and then press \(\{ \). The list is not deleted from memory; it is only removed from the stat list editor.

Notes:

- To delete a list name from memory, use the MEMORY MANAGEMENT/DELETE secondary menu (Chapter 18).
- If you archive a list, it will be removed from the stat list editor.

Removing All Lists and Restoring L1 through L6

You can remove all user-created lists from the stat list editor and restore list names L1 through L6 to columns 1 through 6 in either of two ways.

- Use SetUpEditor with no arguments.
- Reset all memory (Chapter 18).
Clearing All Elements from a List

You can clear all elements from a list in any of five ways.

- Use `ClrList` to clear specified lists.
- In the stat list editor, press `▲` to move the cursor onto a list name, and then press `CLEAR ENTER`.
- In the stat list editor, move the cursor onto each element, and then press `DEL` one by one.
- On the home screen or in the program editor, enter `0 > dim(listname)` to set the dimension of `listname` to 0 (Chapter 11).
- Use `ClrAllLists` to clear all lists in memory (Chapter 18).

Editing a List Element

To edit a list element, follow these steps.

1. Move the cursor onto the element you want to edit.
2. Press `ENTER` to move the cursor to the entry line.

 Note: If you want to replace the current value, you can enter a new value without first pressing `ENTER`. When you enter the first character, the current value is cleared automatically.
3. Edit the element in the entry line.
 - Press one or more keys to enter the new value. When you enter the first character, the current value is cleared automatically.

 You can use the shortcut menus to enter values. When you use `n/d` to enter a fraction, it is not displayed as a stacked fraction in the list. Instead, the fraction has a thick bar separating the numerator and denominator.

 Thick-bar fraction on the list editor entry line: $\frac{5}{3}$

 Thin-bar fraction on the home screen (regular division): $2 \div 3$

 Note: Order of operations applies to fractions. For example, $\frac{1 + 2}{3}$ evaluates to $\frac{5}{3}$ because the order of operations dictates that division is performed before addition. To evaluate $\frac{1 + 2}{3}$, enter $\frac{1 + 2}{3}$ with parentheses around the numerator.

 - Press `▲` to move the cursor to the character before which you want to insert, press `2ND [INS]`, and then enter one or more characters.
 - Press `▲` to move the cursor to a character you want to delete, and then press `DEL` to delete the character.

To cancel any editing and restore the original element at the rectangular cursor, press `CLEAR ENTER`.

Chapter 12: Statistics 187
Note: You can enter expressions and variables for elements.

4. Press \[\text{\texttt{Í, } or \texttt{†}} \] to update the list. If you entered an expression, it is evaluated. If you entered only a variable, the stored value is displayed as a list element.

When you edit a list element in the stat list editor, the list is updated in memory immediately.

Attaching Formulas to List Names

Attaching a Formula to a List Name in Stat List Editor

You can attach a formula to a list name in the stat list editor, and then display and edit the calculated list elements. When executed, the attached formula must resolve to a list. Chapter 11 describes in detail the concept of attaching formulas to list names.

To attach a formula to a list name that is stored in the stat list editor, follow these steps.

1. Press \[\text{STAT\texttt{ENTER}} \] to display the stat list editor.
2. Press \[\text{\texttt{÷}} \] to move the cursor to the top line.
3. Press \[\text{\texttt{L}} \text{ or } \text{\texttt{L}} \] if necessary, to move the cursor onto the list name to which you want to attach the formula.

 Note: If a formula in quotation marks is displayed on the entry line, then a formula is already attached to the list name. To edit the formula, press \[\text{\texttt{ENTER}} \], and then edit the formula.
4. Press \[\text{\texttt{ALPHA \texttt{[}}} \text{\texttt{, \texttt{]}}} \], enter the formula, and press \[\text{\texttt{ALPHA \texttt{[}}} \text{\texttt{, \texttt{]}}} \].

 Note: If you do not use quotation marks, the TI-84 Plus calculates and displays the same initial list of answers, but does not attach the formula for future calculations.

Note: Any user-created list name referenced in a formula must be preceded by an \[\text{\texttt{L}} \] symbol (Chapter 11).
5. Press \[\text{ENTER}\]. The TI-84 Plus calculates each list element and stores it to the list name to which the formula is attached. A lock symbol is displayed in the stat list editor, next to the list name to which the formula is attached.

![lock symbol](image)

Using the Stat List Editor When Formula-Generated Lists Are Displayed

When you edit an element of a list referenced in an attached formula, the TI-84 Plus updates the corresponding element in the list to which the formula is attached (Chapter 11).

![Stat List Editor](image)

When a list with a formula attached is displayed in the stat list editor and you edit or enter elements of another displayed list, then the TI-84 Plus takes slightly longer to accept each edit or entry than when no lists with formulas attached are in view.

Note: To speed editing time, scroll horizontally until no lists with formulas are displayed, or rearrange the stat list editor so that no lists with formulas are displayed.

Handling Errors Resulting from Attached Formulas

On the home screen, you can attach to a list a formula that references another list with dimension 0 (Chapter 11). However, you cannot display the formula-generated list in the stat list editor or on the home screen until you enter at least one element to the list that the formula references.

All elements of a list referenced by an attached formula must be valid for the attached formula. For example, if \textbf{Real} number mode is set and the attached formula is \(\log(L1)\), then each element of \(L1\) must be greater than 0, since the logarithm of a negative number returns a complex result.

When you use the shortcut menus, all values must be valid for use in the templates. For example, if you use the \(\frac{n}{d}\) template, both the numerator and denominator must be integers.

Notes:

- If an error menu is returned when you attempt to display a formula-generated list in the stat list editor, you can select \(2:\text{Goto}\), write down the formula that is attached to the list, and then press \(\text{CLEAR} \text{ ENTER}\) to detach (clear) the formula. You then can use the stat list editor to find the
source of the error. After making the appropriate changes, you can reattach the formula to a list.

• If you do not want to clear the formula, you can select 1:Quit, display the referenced list on the home screen, and find and edit the source of the error. To edit an element of a list on the home screen, store the new value to listname(element#) (Chapter 11).

Detaching Formulas from List Names

Detaching a Formula from a List Name

You can detach (clear) a formula from a list name in several ways.

For example:

• In the stat list editor, move the cursor onto the name of the list to which a formula is attached. Press ENTER CLEAR ENTER. All list elements remain, but the formula is detached and the lock symbol disappears.

• In the stat list editor, move the cursor onto an element of the list to which a formula is attached. Press ENTER, edit the element, and then press ENTER. The element changes, the formula is detached, and the lock symbol disappears. All other list elements remain.

• Use ClrList. All elements of one or more specified lists are cleared, each formula is detached, and each lock symbol disappears. All list names remain.

• Use ClrAllLists (Chapter 18). All elements of all lists in memory are cleared, all formulas are detached from all list names, and all lock symbols disappear. All list names remain.

Editing an Element of a Formula-Generated List

As described above, one way to detach a formula from a list name is to edit an element of the list to which the formula is attached. The TI-84 Plus protects against inadvertently detaching the formula from the list name by editing an element of the formula-generated list.

Because of the protection feature, you must press ENTER before you can edit an element of a formula-generated list.

The protection feature does not allow you to delete an element of a list to which a formula is attached. To delete an element of a list to which a formula is attached, you must first detach the formula in any of the ways described above.

Switching Stat List Editor Contexts

Stat List Editor Contexts

The stat list editor has four contexts.

• View-elements context
• View-names context
• Edit-elements context
• Enter-name context

The stat list editor is first displayed in view-elements context. To switch through the four contexts, select 1:Edit from the STAT EDIT menu and follow these steps.

1. Press \(\text{\textasciitilde} \) to move the cursor onto a list name and switch to view-names context. Press \(\text{\textasciitilde} \) and \(\text{\textasciitilde} \) to view list names stored in other stat list editor columns.

2. Press \(\text{\textasciitilde} \) to switch to edit-elements context. You may edit any element in a list. All elements of the current list are displayed in braces (\{ \}) in the entry line. Press \(\text{\textasciitilde} \) and \(\text{\textasciitilde} \) to view more list elements.

3. Press \(\text{\textasciitilde} \) again to switch to view-elements context. Press \(\text{\textasciitilde} \), \(\text{\textasciitilde} \), \(\text{\textasciitilde} \), and \(\text{\textasciitilde} \) to view other list elements. The current element's full value is displayed in the entry line.

4. Press \(\text{\textasciitilde} \) again to switch back to edit-elements context. You may edit the current element in the entry line.

5. Press \(\text{\textasciitilde} \) until the cursor is on a list name, then press \(\text{2nd} \text{[INS]} \) to switch to enter-name context.

6. Press \(\text{CLEAR} \) to switch to view-names context.

7. Press \(\text{\textasciitilde} \) to switch back to view-elements context.
Stat List Editor Contexts

View-Elements Context

In view-elements context, the entry line displays the list name, the current element’s place in that list, and the full value of the current element, up to 12 characters at a time. An ellipsis (…) indicates that the element continues beyond 12 characters.

To page down the list six elements, press \(\text{ALPHA} \uparrow \). To page up six elements, press \(\text{ALPHA} \downarrow \). To delete a list element, press \(\text{DEL} \). Remaining elements shift up one row. To insert a new element, press \(\text{2nd} \ [\text{INS}] \). 0 is the default value for a new element.

Edit-Elements Context

In edit-elements context, the data displayed in the entry line depends on the previous context.

- When you switch to edit-elements context from view-elements context, the full value of the current element is displayed. You can edit the value of this element, and then press \(\uparrow \) and \(\downarrow \) to edit other list elements.

- When you switch to edit-elements context from view-names context, the full values of all elements in the list are displayed. An ellipsis indicates that list elements continue beyond the screen. You can press \(\uparrow \) and \(\downarrow \) to edit any element in the list.

Note: In edit-elements context, you can attach a formula to a list name only if you switched to it from view-names context.
View-Names Context

In view-names context, the entry line displays the list name and the list elements.

To remove a list from the stat list editor, press **DEL**. Remaining lists shift to the left one column. The list is not deleted from memory.

To insert a name in the current column, press **2nd [INS]**. Remaining columns shift to the right one column.

Enter-Name Context

In enter-name context, the **Name=** prompt is displayed in the entry line, and alpha-lock is on.

At the **Name=** prompt, you can create a new list name, paste a list name from **L1** to **L6** from the keyboard, or paste an existing list name from the **LIST NAMES** menu (Chapter 11). The **L** symbol is not required at the **Name=** prompt.

To leave enter-name context without entering a list name, press **CLEAR**. The stat list editor switches to view-names context.

STAT EDIT Menu

STAT EDIT Menu

To display the **STAT EDIT** menu, press **STAT**.

```
<table>
<thead>
<tr>
<th>EDIT</th>
<th>CALC</th>
<th>TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>Edit</td>
<td>Displays the stat list editor.</td>
</tr>
<tr>
<td>2:</td>
<td>SortA</td>
<td>Sorts a list in ascending order.</td>
</tr>
<tr>
<td>3:</td>
<td>SortD</td>
<td>Sorts a list in descending order.</td>
</tr>
<tr>
<td>4:</td>
<td>ClrList</td>
<td>Deletes all elements of a list.</td>
</tr>
<tr>
<td>5:</td>
<td>SetUpEditor</td>
<td>Stores specified lists in the stat list editor.</td>
</tr>
</tbody>
</table>
```
SortA(, SortD(

SortA((sort ascending) sorts list elements from low to high values. **SortD(** (sort descending) sorts list elements from high to low values. Complex lists are sorted based on magnitude (modulus). **SortA(** and **SortD(** each can sort in either of two ways.

- With one listname, **SortA(** and **SortD(** sort the elements in listname and update the list in memory.
- With two or more lists, **SortA(** and **SortD(** sort keylistname, and then sort each dependlist by placing its elements in the same order as the corresponding elements in keylistname. This lets you sort two-variable data on X and keep the data pairs together. All lists must have the same dimension.

The sorted lists are updated in memory.

SortA(listname)
SortD(listname)
SortA(keylistname,dependlist1[,dependlist2,...,dependlist n])
SortD(keylistname,dependlist1[,dependlist2,...,dependlist n])

Note: **SortA(** and **SortD(** are the same as **SortA(** and **SortD(** on the LIST OPS menu.

ClrList

ClrList clears (deletes) from memory the elements of one or more listnames. **ClrList** also detaches any formula attached to a listname.

ClrList listname1,listname2,...,listname n

Note: To clear from memory all elements of all list names, use **ClrAllLists** (Chapter 18).

SetUpEditor

With **SetUpEditor** you can set up the stat list editor to display one or more listnames in the order that you specify. You can specify zero to 20 listnames.

Additionally, if you want to use listnames which happen to be archived, the SetUp Editor will automatically unarchive the listnames and place them in the stat list editor at the same time.

SetUpEditor [listname1,listname2,...,listname n]
SetUpEditor removes all list names from the stat list editor and then stores *listnames* in the stat list editor columns in the specified order, beginning in column 1.

If you enter a *listname* that is not stored in memory already, then *listname* is created and stored in memory; it becomes an item on the **LIST NAMES** menu.

Restoring L1 through L6 to the Stat List Editor

SetUpEditor with no *listnames* removes all list names from the stat list editor and restores list names L1 through L6 in the stat list editor columns 1 through 6.

Regression Model Features

Regression Model Features

STAT CALC menu items 3 through C are regression models. The automatic residual list and automatic regression equation features apply to all regression models. Diagnostics display mode applies to some regression models.

Automatic Residual List

When you execute a regression model, the automatic residual list feature computes and stores the residuals to the list name RESID. RESID becomes an item on the **LIST NAMES** menu (Chapter 11).
The TI-84 Plus uses the formula below to compute RESID list elements. The next section describes the variable RegEQ.

\[
\text{RESID} = Y\text{listname} - \text{RegEQ}(X\text{listname})
\]

Automatic Regression Equation

Each regression model has an optional argument, `regequ`, for which you can specify a Y= variable such as `Y1`. Upon execution, the regression equation is stored automatically to the specified Y= variable and the Y= function is selected.

Regardless of whether you specify a Y= variable for `regequ`, the regression equation always is stored to the TI-84 Plus variable `RegEQ`, which is item 1 on the VARS Statistics EQ secondary menu.

Diagnostics Display Mode

When you execute some regression models, the TI-84 Plus computes and stores diagnostics values for \(r \) (correlation coefficient) and \(r^2 \) (coefficient of determination) or for \(R^2 \) (coefficient of determination). You can control whether these values are displayed by turning StatDiagnostics on or off on the mode screen.

\(r \) and \(r^2 \) are computed and stored for these regression models.
R^2 is computed and stored for these regression models.

<table>
<thead>
<tr>
<th>QuadReg</th>
<th>CubicReg</th>
<th>QuartReg</th>
</tr>
</thead>
</table>

The r and r^2 that are computed for `LnReg`, `ExpReg`, and `PwrReg` are based on the linearly transformed data. For example, for `ExpReg` ($y=ab^x$), r and r^2 are computed on $\ln y=\ln a+x(\ln b)$.

By default, these values are not displayed with the results of a regression model when you execute it. However, you can set the diagnostics display mode by executing the `DiagnosticOn` or `DiagnosticOff` instruction. Each instruction is in the CATALOG (Chapter 15).

- To turn diagnostics on or off from the mode screen, select `On` or `Off` for `StatDiagnostics`. The default is `Off`.
- To set `DiagnosticOn` or `DiagnosticOff` from the home screen, press `2nd` [CATALOG], and then select the instruction for the mode you want. The instruction is pasted to the home screen. Press `ENTER` to set the mode.

When `DiagnosticOn` is set, diagnostics are displayed with the results when you execute a regression model.

- **MathPrint™**

  ```
  DiagnosticOn
  Done
  $y=ax+b$
  L1, L2
  MathPrint™
  ```

  ```
  LinReg
  y=ax+b
  a=-2
  b=1.53333333333
  r^2=0.99907689228
  r=-.9607689228
  ```

When `DiagnosticOff` is set, diagnostics are not displayed with the results when you execute a regression model.

- **MathPrint™**

  ```
  DiagnosticOff
  Done
  $y=ax+b$
  L1, L2
  MathPrint™
  ```

  ```
  LinReg
  y=ax+b
  a=-2
  b=1.53333333333
  ```

- **Classic**
STAT CALC Menu

To display the STAT CALC menu, press \[\text{STAT} \ \text{x} \].

<table>
<thead>
<tr>
<th>EDIT</th>
<th>CALC</th>
<th>TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>1-Var Stats</td>
<td>Calculates 1-variable statistics.</td>
</tr>
<tr>
<td>2:</td>
<td>2-Var Stats</td>
<td>Calculates 2-variable statistics.</td>
</tr>
<tr>
<td>3:</td>
<td>Med-Med</td>
<td>Calculates a median-median line.</td>
</tr>
<tr>
<td>4:</td>
<td>LinReg(ax+b)</td>
<td>Fits a linear model to data.</td>
</tr>
<tr>
<td>5:</td>
<td>QuadReg</td>
<td>Fits a quadratic model to data.</td>
</tr>
<tr>
<td>6:</td>
<td>CubicReg</td>
<td>Fits a cubic model to data.</td>
</tr>
<tr>
<td>7:</td>
<td>QuartReg</td>
<td>Fits a quartic model to data.</td>
</tr>
<tr>
<td>8:</td>
<td>LinReg(a+bx)</td>
<td>Fits a linear model to data.</td>
</tr>
<tr>
<td>9:</td>
<td>LnReg</td>
<td>Fits a logarithmic model to data.</td>
</tr>
<tr>
<td>0:</td>
<td>ExpReg</td>
<td>Fits an exponential model to data.</td>
</tr>
<tr>
<td>A:</td>
<td>PwrReg</td>
<td>Fits a power model to data.</td>
</tr>
<tr>
<td>B:</td>
<td>Logistic</td>
<td>Fits a logistic model to data.</td>
</tr>
<tr>
<td>C:</td>
<td>SinReg</td>
<td>Fits a sinusoidal model to data.</td>
</tr>
<tr>
<td>D:</td>
<td>Manual Linear Fit</td>
<td>Fits a linear equation interactively to a scatter plot.</td>
</tr>
</tbody>
</table>

For each STAT CALC menu item, if neither \textit{Xlistname} nor \textit{Ylistname} is specified, then the default list names are \textit{L1} and \textit{L2}. If you do not specify \textit{freqlist}, then the default is 1 occurrence of each list element.

STAT WIZARDS in STAT CALC

When STAT WIZARDS is set to ON in MODE, a wizard will open by default. The wizard will prompt for required and optional arguments. In STAT CALC, select Calculate to paste the populated command to home screen and display the results to a temporary view.

Note: After a calculation, statistical variables are available in the VARS menu.
The following screens demonstrate the STAT WIZARDS flow for a STAT CALC menu command.

1. Press press **STAT** **1** to select the STAT CALC menu. Select **1** **ENTER** to select the **1 -Var Stats** menu.
 Note: In this example, data has been entered in L1.

2. The **1 -Var Stats** wizard opens. Enter the values in the wizard. Scroll down to **Calculate** and press **ENTER**.
 Note: **FreqList** is an optional argument.

3. The STAT CALC results are displayed.

4. Press **▼** to scroll down through the data.
 Note: This is a temporary view. Press **VARS** 5 to view the statistic variables after clearing the temporary result screen.

5. Press **CLEAR** to clear the data from the screen.

6. Press **A** to view the populated command pasted.

If the STAT WIZARD mode option if OFF, for each STAT CALC menu item, if neither **Xlistname** nor **Ylistname** is specified, then the default list names are L1 and L2. If you do not specify **freqlist**, then the default is 1 occurrence of each list element.

Frequency of Occurrence for Data Points

For most STAT CALC menu items, you can specify a list of data occurrences, or frequencies (**freqlist**).

Each element in **freqlist** indicates how many times the corresponding data point or data pair occurs in the data set you are analyzing.

For example, if L1={15,12,9,14} and LFREQ={1,4,1,3}, then the TI-84 Plus interprets the instruction **1-Var Stats L1, LFREQ** to mean that 15 occurs once, 12 occurs four times, 9 occurs once, and 14 occurs three times.
Each element in \textit{freqlist} must be ≥ 0, and at least one element must be > 0.

Noninteger \textit{freqlist} elements are valid. This is useful when entering frequencies expressed as percentages or parts that add up to 1. However, if \textit{freqlist} contains noninteger frequencies, \textit{Sx} and \textit{Sy} are undefined; values are not displayed for \textit{Sx} and \textit{Sy} in the statistical results.

\subsection*{1-Var Stats}

\textit{1-Var Stats} (one-variable statistics) analyzes data with one measured variable. Each element in \textit{freqlist} is the frequency of occurrence for each corresponding data point in \textit{Xlistname}. \textit{freqlist} elements must be real numbers > 0.

\textbf{1-Var Stats [Xlistname,freqlist]}

\subsection*{2-Var Stats}

\textit{2-Var Stats} (two-variable statistics) analyzes paired data. \textit{Xlistname} is the independent variable. \textit{Ylistname} is the dependent variable. Each element in \textit{freqlist} is the frequency of occurrence for each data pair \((Xlistname,Ylistname)\).

\textbf{2-Var Stats [Xlistname,Ylistname,freqlist]}

\subsection*{Med-Med (ax+b)}

\textit{Med-Med} (median-median) fits the model equation $y=ax+b$ to the data using the median-median line (resistant line) technique, calculating the summary points x_1, y_1, x_2, y_2, x_3, and y_3. \textit{Med-Med} displays values for a (slope) and b (y-intercept).

\textbf{Med-Med [Xlistname,Ylistname,freqlist,regequ]}
LinReg (ax+b)

LinReg(ax+b) (linear regression) fits the model equation \(y=ax+b \) to the data using a least-squares fit. It displays values for \(a \) (slope) and \(b \) (y-intercept); when DiagnosticOn is set, it also displays values for \(r^2 \) and \(r \).

LinReg(ax+b) \([Xlistname,Ylistname,freqlist,regequ]\)

QuadReg (ax\(^2\)+bx+c)

QuadReg (quadratic regression) fits the second-degree polynomial \(y=ax^2+bx+c \) to the data. It displays values for \(a \), \(b \), and \(c \); when DiagnosticOn is set, it also displays a value for \(R^2 \). For three data points, the equation is a polynomial fit; for four or more, it is a polynomial regression. At least three data points are required.

QuadReg \([Xlistname,Ylistname,freqlist,regequ]\)

CubicReg—(ax\(^3\)+bx\(^2\)+cx+d)

CubicReg (cubic regression) fits the third-degree polynomial \(y=ax^3+bx^2+cx+d \) to the data. It displays values for \(a \), \(b \), \(c \), and \(d \); when DiagnosticOn is set, it also displays a value for \(R^2 \). For four points, the equation is a polynomial fit; for five or more, it is a polynomial regression. At least four points are required.

CubicReg \([Xlistname,Ylistname,freqlist,regequ]\)
QuartReg—(ax^4+bx^3+cx^2+dx+e)

QuartReg (quartic regression) fits the fourth-degree polynomial y=ax^4+bx^3+cx^2+dx+e to the data. It displays values for a, b, c, d, and e; when DiagnosticOn is set, it also displays a value for R^2. For five points, the equation is a polynomial fit; for six or more, it is a polynomial regression. At least five points are required.

QuartReg [Xlistname, Ylistname, freqlist, regequ]

LinReg—(a+bx)

LinReg(a+bx) (linear regression) fits the model equation y=a+bx to the data using a least-squares fit. It displays values for a (y-intercept) and b (slope); when DiagnosticOn is set, it also displays values for r^2 and r.

LinReg(a+bx) [Xlistname, Ylistname, freqlist, regequ]

LnReg—(a+b \ln(x))

LnReg (logarithmic regression) fits the model equation y=a+b \ln(x) to the data using a least-squares fit and transformed values \ln(x) and y. It displays values for a and b; when DiagnosticOn is set, it also displays values for r^2 and r.

LnReg [Xlistname, Ylistname, freqlist, regequ]

ExpReg—(ab^x)

ExpReg (exponential regression) fits the model equation y=ab^x to the data using a least-squares fit and transformed values x and \ln(y). It displays values for a and b; when DiagnosticOn is set, it also displays values for r^2 and r.
ExpReg \[Xlistname,Ylistname,freqlist,regequ\]

ExpReg (exponential regression) fits the model equation \(y=ax^b\) to the data using transformations \(\ln(x)\) and \(\ln(y)\). It displays values for \(a\) and \(b\); when DiagnosticOn is set, it also displays values for \(r^2\) and \(r\).

PwrReg \([ax^b]\)

PwrReg (power regression) fits the model equation \(y=ax^b\) to the data using a least-squares fit and transformed values \(\ln(x)\) and \(\ln(y)\). It displays values for \(a\) and \(b\); when DiagnosticOn is set, it also displays values for \(r^2\) and \(r\).

PwrReg \[Xlistname,Ylistname,freqlist,regequ\]

Logistic \(-c/(1+a\cdot e^{-bx})\)

Logistic fits the model equation \(y=c/(1+a\cdot e^{-bx})\) to the data using an iterative least-squares fit. It displays values for \(a\), \(b\), and \(c\).

Logistic \[Xlistname,Ylistname,freqlist,regequ\]

SinReg \(-a \sin(bx+c)+d\)

SinReg (sinusoidal regression) fits the model equation \(y=a \sin(bx+c)+d\) to the data using an iterative least-squares fit. It displays values for \(a\), \(b\), \(c\), and \(d\). At least four data points are required. At least two data points per cycle are required in order to avoid aliased frequency estimates.
\textbf{SinReg} \,[\textit{iterations,Xlistname,Ylistname,period,regequ}]

\begin{verbatim}
\begin{verbatim}
\textbf{SinReg}
\end{verbatim}
\begin{verbatim}
Iterations: 3
\end{verbatim}
\begin{verbatim}
Xlistname \textbf{L1}
\end{verbatim}
\begin{verbatim}
Ylistname \textbf{L2}
\end{verbatim}
\begin{verbatim}
Period:
\end{verbatim}
\begin{verbatim}
Store \textbf{Regequ}: Calculate
\end{verbatim}
\end{verbatim}

\textit{iterations} is the maximum number of times the algorithm will iterate to find a solution. The value for \textit{iterations} can be an integer \(\geq 1\) and \(\leq 16\); if not specified, the default is 3. The algorithm may find a solution before \textit{iterations} is reached. Typically, larger values for \textit{iterations} result in longer execution times and better accuracy for SinReg, and vice versa.

A \textit{period} guess is optional. If you do not specify \textit{period}, the difference between time values in Xlistname must be equal and the time values must be ordered in ascending sequential order. If you specify \textit{period}, the algorithm may find a solution more quickly, or it may find a solution when it would not have found one if you had omitted a value for \textit{period}. If you specify \textit{period}, the differences between time values in Xlistname can be unequal.

\textbf{Note:} The output of SinReg is always in radians, regardless of the Radian/Degree mode setting.

\textbf{SinReg Example: Daylight Hours in Alaska for One Year}

Compute the regression model for the number of hours of daylight in Alaska during one year.

With noisy data, you will achieve better convergence results when you specify an accurate estimate for \textit{period}. You can obtain a \textit{period} guess in either of two ways.
• Plot the data and trace to determine the x-distance between the beginning and end of one complete period, or cycle. The illustration above and to the right graphically depicts a complete period, or cycle.
• Plot the data and trace to determine the x-distance between the beginning and end of N complete periods, or cycles. Then divide the total distance by N.

After your first attempt to use \texttt{SinReg} and the default value for \textit{iterations} to fit the data, you may find the fit to be approximately correct, but not optimal. For an optimal fit, execute \texttt{SinReg 16,\texttt{Xlistname},\texttt{Ylistname},2\pi b} where \(b \) is the value obtained from the previous \texttt{SinReg} execution.

\textbf{Manual Linear Fit}

Manual Linear Fit allows you to visually fit a linear function to a scatter plot. Manual Linear Fit is an option in the \textbf{STAT} \texttt{CALC} menu.

After entering List data and viewing the StatPlot, select the Manual-Fit function.

1. Press \texttt{STAT} to display the Stat menu. Press \(\boxed{9} \) to select \texttt{CALC}. Press \(\boxed{3} \) several times to scroll down to select \texttt{D:Manual-Fit}. Press \texttt{Enter}. This displays a free-floating cursor at the center of the display screen.

2. Press the cursor navigation keys (\(\boxed{4} \boxed{6} \boxed{\pm} \boxed{\uparrow} \)) to move the cursor to the desired location. Press \texttt{Enter} to select the first point.

3. Press the cursor navigation keys (\(\boxed{4} \boxed{6} \boxed{\pm} \boxed{\downarrow} \)) to move the cursor to the second location. Press \texttt{Enter}. This displays a line containing the two points selected.

The linear function is displayed. The Manual-Fit Line equation displays in the form of \(Y=mX+b \). The current value of the first parameter (\(m \)) is highlighted in the symbolic expression.

\textit{Modify parameter values}

Press the cursor navigation keys (\(\boxed{4} \boxed{\leftarrow} \boxed{\rightarrow} \boxed{\uparrow} \)) to move from the first parameter (\(m \)) or (\(b \)) the second parameter. You can press \texttt{Enter} and type a new parameter value. Press \texttt{Enter} to display the new parameter value. When you edit the value of the selected parameter, the edit can include insert, delete, type over, or mathematical expression.

The screen dynamically displays the revised parameter value. Press \texttt{Enter} to complete the modification of the selected parameter, save the value, and refresh the displayed graph. The
system displays the revised parameter value in the symbolic expression \(Y = mX + B \), and refreshes the graph with the updated Manual-Fit Line.

Select \([2^{nd} \text{QUIT}]\) to finish the Manual Fit function. The calculator stores the current \(mX + b \) expression into \(Y1 \) and makes that function active for graphing. You can also select Manual-Fit while on the Home screen. You can then enter a different \(Y\)-Var such as \(Y4 \) and then press \([\text{ENTER}]\). This takes you to the Graph screen and then pastes the Manual-Fit equation in the specified \(Y\)-Var. In this example, \(Y4 \).

Statistical Variables

The statistical variables are calculated and stored as indicated below. To access these variables for use in expressions, press \([\text{VARS}]\), and select \(5:\text{Statistics} \). Then select the \(\text{VARS} \) menu shown in the column below under \(\text{VARS} \) menu. If you edit a list or change the type of analysis, all statistical variables are cleared.

<table>
<thead>
<tr>
<th>Variables</th>
<th>1-Var Stats</th>
<th>2-Var Stats</th>
<th>Other</th>
<th>VARS menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean of x values</td>
<td>(\bar{x})</td>
<td>(\bar{x})</td>
<td>(XY)</td>
<td>(XY)</td>
</tr>
<tr>
<td>sum of x values</td>
<td>(\sum x)</td>
<td>(\sum x)</td>
<td>(\Sigma)</td>
<td>(\Sigma)</td>
</tr>
<tr>
<td>sum of (x^2) values</td>
<td>(\sum x^2)</td>
<td>(\sum x^2)</td>
<td>(\Sigma)</td>
<td>(\Sigma)</td>
</tr>
<tr>
<td>sample standard deviation of x</td>
<td>Sx</td>
<td>Sx</td>
<td>(XY)</td>
<td>(XY)</td>
</tr>
<tr>
<td>population standard deviation of x</td>
<td>(\sigma x)</td>
<td>(\sigma x)</td>
<td>(XY)</td>
<td>(XY)</td>
</tr>
<tr>
<td>number of data points</td>
<td>n</td>
<td>n</td>
<td>(XY)</td>
<td>(XY)</td>
</tr>
<tr>
<td>mean of y values</td>
<td>(\bar{y})</td>
<td>(\bar{y})</td>
<td>(XY)</td>
<td>(XY)</td>
</tr>
<tr>
<td>sum of y values</td>
<td>(\sum y)</td>
<td>(\sum y)</td>
<td>(\Sigma)</td>
<td>(\Sigma)</td>
</tr>
<tr>
<td>sum of (y^2) values</td>
<td>(\sum y^2)</td>
<td>(\sum y^2)</td>
<td>(\Sigma)</td>
<td>(\Sigma)</td>
</tr>
<tr>
<td>sample standard deviation of y</td>
<td>Sy</td>
<td>Sy</td>
<td>(XY)</td>
<td>(XY)</td>
</tr>
<tr>
<td>population standard deviation of y</td>
<td>(\sigma y)</td>
<td>(\sigma y)</td>
<td>(XY)</td>
<td>(XY)</td>
</tr>
<tr>
<td>sum of (x \times y)</td>
<td>(\sum xy)</td>
<td>(\sum xy)</td>
<td>(\Sigma)</td>
<td>(\Sigma)</td>
</tr>
<tr>
<td>minimum of x values</td>
<td>min(X)</td>
<td>min(X)</td>
<td>(XY)</td>
<td>(XY)</td>
</tr>
<tr>
<td>maximum of x values</td>
<td>max(X)</td>
<td>max(X)</td>
<td>(XY)</td>
<td>(XY)</td>
</tr>
<tr>
<td>minimum of y values</td>
<td>min(Y)</td>
<td>min(Y)</td>
<td>(XY)</td>
<td>(XY)</td>
</tr>
<tr>
<td>maximum of y values</td>
<td>max(Y)</td>
<td>max(Y)</td>
<td>(XY)</td>
<td>(XY)</td>
</tr>
<tr>
<td>1st quartile</td>
<td>Q1</td>
<td>Q1</td>
<td>PTS</td>
<td>PTS</td>
</tr>
<tr>
<td>median</td>
<td>Med</td>
<td>Med</td>
<td>PTS</td>
<td>PTS</td>
</tr>
<tr>
<td>3rd quartile</td>
<td>Q3</td>
<td>Q3</td>
<td>PTS</td>
<td>PTS</td>
</tr>
<tr>
<td>regression/fit coefficients</td>
<td>a, b</td>
<td>a, b</td>
<td>EQ</td>
<td>EQ</td>
</tr>
<tr>
<td>polynomial, Logistic, and SinReg coefficients</td>
<td>a, b, c, d, e</td>
<td>a, b, c, d, e</td>
<td>EQ</td>
<td>EQ</td>
</tr>
</tbody>
</table>
Q1 and Q3

The first quartile (Q1) is the median of points between minX and Med (median). The third quartile (Q3) is the median of points between Med and maxX.

Statistical Analysis in a Program

Entering Stat Data

You can enter statistical data, calculate statistical results, and fit models to data from a program. You can enter statistical data into lists directly within the program (Chapter 11).

Statistical Calculations

To perform a statistical calculation from a program, follow these steps.

1. On a blank line in the program editor, select the type of calculation from the STAT CALC menu.
2. Enter the names of the lists to use in the calculation. Separate the list names with a comma.
3. Enter a comma and then the name of a Y= variable, if you want to store the regression equation to a Y= variable.
Statistical Plotting

Steps for Plotting Statistical Data in Lists

You can plot statistical data that is stored in lists. The six types of plots available are scatter plot, xyLine, histogram, modified box plot, regular box plot, and normal probability plot. You can define up to three plots.

To plot statistical data in lists, follow these steps.

1. Store the stat data in one or more lists.
2. Select or deselect Y= functions as appropriate.
3. Define the stat plot.
4. Turn on the plots you want to display.
5. Define the viewing window.
6. Display and explore the graph.

Scatter

Scatter plots plot the data points from Xlist and Ylist as coordinate pairs, showing each point as a box (□), cross (+), or dot (•). Xlist and Ylist must be the same length. You can use the same list for Xlist and Ylist.

xyLine

xyLine is a scatter plot in which the data points are plotted and connected in order of appearance in Xlist and Ylist. You may want to use SortA(or SortD(to sort the lists before you plot them.
Histogram

Histogram (\(\text{HIST}\)) plots one-variable data. The \(X\text{scl}\) window variable value determines the width of each bar, beginning at \(X\text{min}\). ZoomStat adjusts \(X\text{min}\), \(X\text{max}\), \(Y\text{min}\), and \(Y\text{max}\) to include all values, and also adjusts \(X\text{scl}\). The inequality \((X\text{max} - X\text{min}) / X\text{scl} \leq 47\) must be true. A value that occurs on the edge of a bar is counted in the bar to the right.

![Histogram Example]

ModBoxplot

ModBoxplot (\(\text{MOD}\)) (modified box plot) plots one-variable data, like the regular box plot, except points that are 1.5 * Interquartile Range beyond the quartiles. (The Interquartile Range is defined as the difference between the third quartile \(Q3\) and the first quartile \(Q1\).) These points are plotted individually beyond the whisker, using the Mark (\(\square\) or + or *) you select. You can trace these points, which are called outliers.

The prompt for outlier points is \(x=\), except when the outlier is the maximum point (\(\text{maxX}\)) or the minimum point (\(\text{minX}\)). When outliers exist, the end of each whisker will display \(x=\). When no outliers exist, \(\text{minX}\) and \(\text{maxX}\) are the prompts for the end of each whisker. \(Q1\), \(\text{Med}\) (median), and \(Q3\) define the box.

Box plots are plotted with respect to \(X\text{min}\) and \(X\text{max}\), but ignore \(Y\text{min}\) and \(Y\text{max}\). When two box plots are plotted, the first one plots at the top of the screen and the second plots in the middle. When three are plotted, the first one plots at the top, the second in the middle, and the third at the bottom.

![Boxplot Example]

Boxplot

Boxplot (\(\text{BOX}\)) (regular box plot) plots one-variable data. The whiskers on the plot extend from the minimum data point in the set (\(\text{minX}\)) to the first quartile (\(Q1\)) and from the third quartile (\(Q3\)) to the maximum point (\(\text{maxX}\)). The box is defined by \(Q1\), \(\text{Med}\) (median), and \(Q3\).

Box plots are plotted with respect to \(X\text{min}\) and \(X\text{max}\), but ignore \(Y\text{min}\) and \(Y\text{max}\). When two box plots are plotted, the first one plots at the top of the screen and the second plots in the middle.
When three are plotted, the first one plots at the top, the second in the middle, and the third at the bottom.

NormProbPlot

NormProbPlot (\(\text{NormProbPlot}\)) (normal probability plot) plots each observation \(X\) in Data List versus the corresponding quantile \(z\) of the standard normal distribution. If the plotted points lie close to a straight line, then the plot indicates that the data are normal.

Enter a valid list name in the Data List field. Select X or Y for the Data Axis setting.

- If you select X, the TI-84 Plus plots the data on the x-axis and the z-values on the y-axis.
- If you select Y, the TI-84 Plus plots the data on the y-axis and the z-values on the x-axis.

Defining the Plots

To define a plot, follow these steps.

1. Press \(2^{\text{nd}}\) [STAT PLOT]. The STAT PLOTS menu is displayed with the current plot definitions.

2. Select the plot you want to use. The stat plot editor is displayed for the plot you selected.
3. Press ENTER to select On if you want to plot the statistical data immediately. The definition is stored whether you select On or Off.

4. Select the type of plot. Each type prompts for the options checked in this table.

<table>
<thead>
<tr>
<th>Plot Type</th>
<th>XList</th>
<th>YList</th>
<th>Mark</th>
<th>Freq</th>
<th>Data List</th>
<th>Data Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scatter</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>xyLine</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>Histogram</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>ModBoxplot</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>Boxplot</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>NormProbPlot</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

5. Enter list names or select options for the plot type.
 • Xlist (list name containing independent data)
 • Ylist (list name containing dependent data)
 • Mark (□ or + or •)
 • Freq (frequency list for Xlist elements; default is 1)
 • Data List (list name for NormProbPlot)
 • Data Axis (axis on which to plot Data List)

Displaying Other Stat Plot Editors

Each stat plot has a unique stat plot editor. The name of the current stat plot (Plot1, Plot2, or Plot3) is highlighted in the top line of the stat plot editor. To display the stat plot editor for a different plot, press [2] and [3] to move the cursor onto the name in the top line, and then press ENTER. The stat plot editor for the selected plot is displayed, and the selected name remains highlighted.
Turning On and Turning Off Stat Plots

PlotsOn and PlotsOff allow you to turn on or turn off stat plots from the home screen or a program. With no plot number, PlotsOn turns on all plots and PlotsOff turns off all plots. With one or more plot numbers (1, 2, and 3), PlotsOn turns on specified plots, and PlotsOff turns off specified plots.

PlotsOff [1,2,3]
PlotsOn [1,2,3]

Note: You also can turn on and turn off stat plots in the top line of the Y= editor (Chapter 3).

Defining the Viewing Window

Stat plots are displayed on the current graph. To define the viewing window, press [WINDOW] and enter values for the window variables. ZoomStat redefines the viewing window to display all statistical data points.

Tracing a Stat Plot

When you trace a scatter plot or xyLine, tracing begins at the first element in the lists.

When you trace a histogram, the cursor moves from the top center of one column to the top center of the next, starting at the first column.

When you trace a box plot, tracing begins at Med (the median). Press [] to trace to Q1 and minX. Press [▼] to trace to Q3 and maxX.

When you press [}] or [†] to move to another plot or to another Y= function, tracing moves to the current or beginning point on that plot (not the nearest pixel).

The ExprOn/ExprOff format setting applies to stat plots (Chapter 3). When ExprOn is selected, the plot number and plotted data lists are displayed in the top-left corner.

Statistical Plotting in a Program

Defining a Stat Plot in a Program

To display a stat plot from a program, define the plot, and then display the graph.

To define a stat plot from a program, begin on a blank line in the program editor and enter data into one or more lists; then, follow these steps.
1. Press [2nd STAT PLOT] to display the STAT PLOTS menu.

2. Select the plot to define, which pastes Plot1, Plot2, or Plot3 to the cursor location.

3. Press [2nd STAT PLOT] ▶️ to display the STAT TYPE menu.

4. Select the type of plot, which pastes the name of the plot type to the cursor location.

5. Press []. Enter the list names, separated by commas.

6. Press [2nd STAT PLOT] ▶️ to display the STAT PLOT MARK menu. (This step is not necessary if you selected 3:Histogram or 5:Boxplot in step 4.)

7. Press [ENTER] to complete the command line.
Displaying a Stat Plot from a Program

To display a plot from a program, use the **DispGraph** instruction (Chapter 16) or any of the ZOOM instructions (Chapter 3).

```
PROGRAM: PLOT
{(1,2,3,4)}+L₁
{(5,6,7,8)}+L₂
:Plot2(Scatter,L₁,L₂)
:DispGraph

PROGRAM: PLOT
{(1,2,3,4)}+L₁
{(5,6,7,8)}+L₂
:Plot2(Scatter,L₁,L₂)
:DispGraph
:ZoomStat
```
Suppose you want to estimate the mean height of a population of women given the random sample below. Because heights among a biological population tend to be normally distributed, a t distribution confidence interval can be used when estimating the mean. The 10 height values below are the first 10 of 90 values, randomly generated from a normally distributed population with an assumed mean of 165.1 centimeters and a standard deviation of 6.35 centimeters ($\text{randNorm}(165.1,6.35,90)$ with a seed of 789).

<table>
<thead>
<tr>
<th>Height (in centimeters) of Each of 10 Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>169.43</td>
</tr>
</tbody>
</table>

1. Press $\text{STAT} \downarrow \text{ENTER}$ to display the stat list editor.
 Press \downarrow to move the cursor onto L1, and then press $\left[2\right] \left[\text{INS}\right]$ to insert a new list. The Name= prompt is displayed on the bottom line. The \square cursor indicates that alpha-lock is on. The existing list name columns shift to the right.

 Note: Your stat editor may not look like the one pictured here, depending on the lists you have already stored.

2. Enter $\text{H} \left[G\right] \left[H\right] \left[T\right]$ at the Name= prompt, and then press ENTER to create the list to store the women’s height data.
 Press \downarrow to move the cursor into the first row of the list. HGHT(1)= is displayed on the bottom line. Press ENTER.

3. Press 169 \downarrow 43 to enter the first height value. As you enter it, it is displayed on the bottom line.
 Press ENTER. The value is displayed in the first row, and the rectangular cursor moves to the next row.

 Enter the other nine height values the same way.
Chapter 13: Inferential Statistics and Distributions 216

Interpreting the results

The first line, (159.74,173.94), shows that the 99 percent confidence interval for the population mean is between about 159.74 centimeters and 173.94 centimeters. This is about a 14.2 centimeters spread.

The .99 confidence level indicates that in a very large number of samples, we expect 99 percent of the intervals calculated to contain the population mean. The actual mean of the population sampled is 165.1 centimeters, which is in the calculated interval.

The second line gives the mean height of the sample \(\bar{x} \) used to compute this interval. The third line gives the sample standard deviation \(s_x \). The bottom line gives the sample size \(n \).

To obtain a more precise bound on the population mean \(\mu \) of women’s heights, increase the sample size to 90. Use a sample mean \(\bar{x} \) of 163.8 and sample standard deviation \(s_x \) of 7.1 calculated from the larger random sample. This time, use the Stats (summary statistics) input option.

1. Press \(\text{STAT} \ \times \ 8 \) to display the inferential stat editor for TInterval.
 Press \(\text{ENTER} \) to select Inpt:Stats. The editor changes so that you can enter summary statistics as input.
If the height distribution among a population of women is normally distributed with a mean \(\mu \) of 165.1 centimeters and a standard deviation \(\sigma \) of 6.35 centimeters, what height is exceeded by only 5 percent of the women (the 95th percentile)?

3. Press \(\text{\texttt{Toh}} \) to move the cursor onto Calculate, and then press \(\text{\texttt{Toh}} \) to calculate the new 99 percent confidence interval. The results are displayed on the home screen.

If the height distribution among a population of women is normally distributed with a mean \(\mu \) of 165.1 centimeters and a standard deviation \(\sigma \) of 6.35 centimeters, what height is exceeded by only 5 percent of the women (the 95th percentile)?

4. Press \(\text{\texttt{CLEAR}} \) to clear the home screen.

5. Press 3 to open the \text{\texttt{invNorm}}(wizard. Enter the information as follows:

 Press \(\text{\texttt{Toh}} \) (95 is the area, 165.1 is \(\mu \), and 6.35 is \(\sigma \)).

6. Press \(\text{\texttt{Toh}} \) again to calculate the result.

The result is displayed on the home screen; it shows that five percent of the women are taller than 175.5 centimeters.

Now graph and shade the top 5 percent of the population.
8. Press 2nd [DISTR] to display the DISTR DRAW menu.

9. Press ENTER to open a wizard for the input of the ShadeNorm(parameters.

10. Enter 175 \(\pm \) 5448205 for the lower bound and press \(\checkmark \). Enter 1 \(\pm \) 699 for the upper bound and press \(\checkmark \). Enter the mean \(\mu \) of 165 \(\pm \) 1 for the normal curve and press \(\checkmark \). Enter a standard deviation \(\sigma \) of 6 \(\pm \) 35.

11. Press \(\checkmark \) to select Draw and then press ENTER to plot and shade the normal curve. Area is the area above the 95th percentile. low is the lower bound. up is the upper bound.

Inferential Stat Editors

Displaying the Inferential Stat Editors

When you select a hypothesis test or confidence interval instruction from the home screen, the appropriate inferential statistics editor is displayed. The editors vary according to each test or interval's input requirements. Below is the inferential stat editor for T-Test.

Note: When you select the ANOVA(instruction, it is pasted to the home screen. ANOVA(does not have an editor screen.

Using an Inferential Stat Editor

To use an inferential stat editor, follow these steps.
1. Select a hypothesis test or confidence interval from the STAT TESTS menu. The appropriate editor is displayed.
2. Select Data or Stats input, if the selection is available. The appropriate editor is displayed.
3. Enter real numbers, list names, or expressions for each argument in the editor.
4. Select the alternative hypothesis (≠, <, or >) against which to test, if the selection is available.
5. Select No or Yes for the Pooled option, if the selection is available.
6. Select Calculate or Draw (when Draw is available) to execute the instruction.
 • When you select Calculate, the results are displayed on the home screen.
 • When you select Draw, the results are displayed in a graph.

This chapter describes the selections in the above steps for each hypothesis test and confidence interval instruction.

Selecting Data or Stats

Most inferential stat editors prompt you to select one of two types of input. (1-PropZInt and 2-PropZTest, 1-PropZInt and 2-PropZInt, \(\chi^2 \)-Test, \(\chi^2 \)-GOF-Test, LinRegTInt, and LinRegTTest do not.)

- Select Data to enter the data lists as input.
- Select Stats to enter summary statistics, such as \(\bar{x}, S_x \), and \(n \), as input.

To select Data or Stats, move the cursor to either Data or Stats, and then press ENTER.

Entering the Values for Arguments

Inferential stat editors require a value for every argument. If you do not know what a particular argument symbol represents, see the Inferential Statistics Input Descriptions tables.

When you enter values in any inferential stat editor, the TI-84 Plus stores them in memory so that you can run many tests or intervals without having to reenter every value.

Selecting an Alternative Hypothesis (≠ < >)

Most of the inferential stat editors for the hypothesis tests prompt you to select one of three alternative hypotheses.

- The first is a ≠ alternative hypothesis, such as \(\mu \neq \mu_0 \) for the Z-Test.
- The second is a < alternative hypothesis, such as \(\mu_1 < \mu_2 \) for the 2-SampTTest.
• The third is a > alternative hypothesis, such as \(p_1 > p_2 \) for the 2-PropZTest.

To select an alternative hypothesis, move the cursor to the appropriate alternative, and then press ENTER.

Selecting the Pooled Option

Pooled (2-SampTTest and 2-SampTInt only) specifies whether the variances are to be pooled for the calculation.

• Select No if you do not want the variances pooled. Population variances can be unequal.
• Select Yes if you want the variances pooled. Population variances are assumed to be equal.

To select the Pooled option, move the cursor to Yes, and then press ENTER.

Selecting Calculate or Draw for a Hypothesis Test

After you have entered all arguments in an inferential stat editor for a hypothesis test, you must select whether you want to see the calculated results on the home screen (Calculate) or on the graph screen (Draw).

• Calculate calculates the test results and displays the outputs on the home screen.
• Draw draws a graph of the test results and displays the test statistic and p-value with the graph. The window variables are adjusted automatically to fit the graph.

To select Calculate or Draw, move the cursor to either Calculate or Draw, and then press ENTER. The instruction is immediately executed.

Selecting Calculate for a Confidence Interval

After you have entered all arguments in an inferential stat editor for a confidence interval, select Calculate to display the results. The Draw option is not available.

When you press ENTER, Calculate calculates the confidence interval results and displays the outputs on the home screen.

Bypassing the Inferential Stat Editors

To paste a hypothesis test or confidence interval instruction to the home screen without displaying the corresponding inferential stat editor, select the instruction you want from the CATALOG menu. Appendix A describes the input syntax for each hypothesis test and confidence interval instruction.

\[
2\text{-SampZTest}(\text{Chapter 15})
\]

Note: You can paste a hypothesis test or confidence interval instruction to a command line in a program. From within the program editor, select the instruction from either the CATALOG (Chapter 15) or the STAT TESTS menu.
STAT TESTS Menu

To display the STAT TESTS menu, press [STAT 4]. When you select an inferential statistics instruction, the appropriate inferential stat editor is displayed.

Most STAT TESTS instructions store some output variables to memory. For a list of these variables, see the Test and Interval Output Variables table.

EDIT CALC TESTS
1: Z-Test... Test for 1 \(\mu \), known \(\sigma \)
2: T-Test... Test for 1 \(\mu \), unknown \(\sigma \)
3: 2-SampZTest... Test comparing 2 \(\mu \)’s, known \(\sigma \)’s
4: 2-SampTTest... Test comparing 2 \(\mu \)’s, unknown \(\sigma \)’s
5: 1-PropZTest... Test for 1 proportion
6: 2-PropZTest... Test comparing 2 proportions
7: ZInterval... Confidence interval for 1 \(\mu \), known \(\sigma \)
8: TInterval... Confidence interval for 1 \(\mu \), unknown \(\sigma \)
9: 2-SampZInt... Confidence interval for difference of 2 \(\mu \)’s, known \(\sigma \)’s
0: 2-SampTInt... Confidence interval for difference of 2 \(\mu \)’s, unknown \(\sigma \)’s
A: 1-PropZInt... Confidence interval for 1 proportion
B: 2-PropZInt... Confidence interval for difference of 2 proportions
C: \(\chi^2 \)-Test... Chi-square test for 2-way tables
D: \(\chi^2 \)-GOF Test... Chi-square Goodness of Fit test
E: 2-SampFTest... Test comparing 2 \(\sigma \)’s
F: LinRegTTest... \(t \) test for regression slope and \(r \)
G: LinRegTInt... Confidence interval for linear regression slope coefficient \(b \)
H: ANOVA(One-way analysis of variance

Note: When a new test or interval is computed, all previous output variables are invalidated.

Inferential Stat Editors for the STAT TESTS Instructions

In this chapter, the description of each STAT TESTS instruction shows the unique inferential stat editor for that instruction with example arguments.

• Descriptions of instructions that offer the Data/Stats input choice show both types of input screens.
• Descriptions of instructions that do not offer the **Data/Stats** input choice show only one input screen.

The description then shows the unique output screen for that instruction with the example results.

• Descriptions of instructions that offer the **Calculate/Draw** output choice show both types of screens: calculated and graphic results.

• Descriptions of instructions that offer only the **Calculate** output choice show the calculated results on the home screen.
Z-Test

The Z-Test (one-sample z-test; item 1) performs a hypothesis test for a single unknown population mean \(\mu \) when the population standard deviation \(\sigma \) is known. It tests the null hypothesis \(H_0: \mu = \mu_0 \) against one of the alternatives below.

- \(H_a: \mu \neq \mu_0 \) (\(\mu: \neq \mu_0 \))
- \(H_a: \mu < \mu_0 \) (\(\mu: < \mu_0 \))
- \(H_a: \mu > \mu_0 \) (\(\mu: > \mu_0 \))

In the example:

\[\text{L1} = \{299.4, 297.7, 301, 298.9, 300.2, 297\} \]

Note: All \text{STAT TESTS} examples assume a fixed-decimal mode setting of 4 (Chapter 1). If you set the decimal mode to \text{Float} or a different fixed-decimal setting, your output may differ from the output in the examples.
T-Test

T-Test (one-sample t test; item 2) performs a hypothesis test for a single unknown population mean \(\mu \) when the population standard deviation \(\sigma \) is unknown. It tests the null hypothesis \(H_0: \mu = \mu_0 \) against one of the alternatives below.

- \(H_a: \mu \neq \mu_0 \) (\(\mu: \neq \mu_0 \))
- \(H_a: \mu < \mu_0 \) (\(\mu: < \mu_0 \))
- \(H_a: \mu > \mu_0 \) (\(\mu: > \mu_0 \))

In the example:

\[\text{TEST} = \{91.9, 97.8, 111.4, 122.3, 105.4, 95\} \]

Data

<table>
<thead>
<tr>
<th>Input:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inpt: Data Stats</td>
</tr>
<tr>
<td>(\mu): 105</td>
</tr>
<tr>
<td>List: TEST</td>
</tr>
<tr>
<td>Frq: 41</td>
</tr>
<tr>
<td>(\mu \neq \mu_0) < (\mu) > (\mu)</td>
</tr>
<tr>
<td>Calculate Draw</td>
</tr>
</tbody>
</table>

Stats

<table>
<thead>
<tr>
<th>Input:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inpt: Data Stats</td>
</tr>
<tr>
<td>(\mu): 105</td>
</tr>
<tr>
<td>(\sigma): 10.3.966666</td>
</tr>
<tr>
<td>(\bar{x}): 11.46693798</td>
</tr>
<tr>
<td>n: 6</td>
</tr>
<tr>
<td>(\mu \neq \mu_0) < (\mu) > (\mu)</td>
</tr>
<tr>
<td>Calculate Draw</td>
</tr>
</tbody>
</table>

Calculated results:

| t: -2.207336784 |
| p: 0.03490302114 |
| \(\bar{x} \): 11.46693798 |
| n: 6 |

Drawn results:
2-SampZTest

2-SampZTest (two-sample \(z \) test; item 3) tests the equality of the means of two populations (\(\mu_1 \) and \(\mu_2 \)) based on independent samples when both population standard deviations (\(\sigma_1 \) and \(\sigma_2 \)) are known. The null hypothesis \(H_0: \mu_1=\mu_2 \) is tested against one of the alternatives below.

- \(H_a: \mu_1 \neq \mu_2 \) (\(\mu_1: \neq \mu_2 \))
- \(H_a: \mu_1 < \mu_2 \) (\(\mu_1: < \mu_2 \))
- \(H_a: \mu_1 > \mu_2 \) (\(\mu_1: > \mu_2 \))

In the example:

\(\text{LISTA}=\{154, 109, 137, 115, 140\} \)
\(\text{LISTB}=\{108, 115, 126, 92, 146\} \)

Data

Input:

<table>
<thead>
<tr>
<th>2-SampZTest</th>
<th>Inpt: Data Stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_1): 15.5</td>
<td></td>
</tr>
<tr>
<td>(\sigma_2): 15.5</td>
<td></td>
</tr>
<tr>
<td>List1: LISTA</td>
<td></td>
</tr>
<tr>
<td>List2: LISTB</td>
<td></td>
</tr>
<tr>
<td>Freq 1: 1</td>
<td></td>
</tr>
<tr>
<td>Freq 2: 1</td>
<td></td>
</tr>
</tbody>
</table>

Calculated results:

\(\mu_1 \neq \mu_2 \) \(\text{Calculate Draw} \)

\(z = 1.479484958 \)
\(p = 0.06935054075 \)
\(x_1 = 131 \)
\(x_2 = 117.4 \)
\(Sx_1 = 18.6145105 \)

\(\text{Drawn results:} \)

\(z = 1.4795 \)
\(p = 0.06935 \)

\(n_1 = 5 \)
\(n_2 = 5 \)
2-SampTTest

2-SampTTest (two-sample t test; item 4) tests the equality of the means of two populations (μ₁ and μ₂) based on independent samples when neither population standard deviation (σ₁ or σ₂) is known. The null hypothesis H₀: μ₁=μ₂ is tested against one of the alternatives below.

• Hₐ: μ₁≠μ₂ (μ₁:≠μ₂)
• Hₐ: μ₁<μ₂ (μ₁:<μ₂)
• Hₐ: μ₁>μ₂ (μ₁:>μ₂)

In the example:

SAMP1={12.207, 16.869, 25.05, 22.429, 8.456, 10.589, 11.074, 9.686, 12.064, 9.351, 8.182, 6.642}

Data

\[\text{Inpt: Data: SAMP1} \]
\[\text{List1: SAMP1} \]
\[\text{List2: SAMP2} \]
\[\text{Freq: 1} \]
\[\mu_1 > \mu_2 \]
\[\text{Pooled: No, Yes} \]

Stats

\[\text{Inpt: Data: SAMP1} \]
\[\text{List1: SAMP1} \]
\[\text{List2: SAMP2} \]
\[\text{Freq: 1} \]
\[\mu_1 > \mu_2 \]
\[\text{Pooled: No, Yes} \]

Calculated results:

\[\mu_1 \neq \mu_2 \]
\[t = 2.245140574 \]
\[p = 0.0671104729 \]
\[df = 5.836942239 \]
\[\bar{x}_1 = 15.9185 \]
\[\bar{x}_2 = 9.498333333 \]

\[\text{Sx1: 6.7014} \]
\[\text{Sx2: 1.9501} \]
\[n1 = 6 \]
\[n2 = 6 \]

Drawn results:

\[t = 2.2579 \]
\[p = 0.0659 \]
1-PropZTest

1-PropZTest (one-proportion z-test; item 5) computes a test for an unknown proportion of successes (prop). It takes as input the count of successes in the sample \(x \) and the count of observations in the sample \(n \). 1-PropZTest tests the null hypothesis \(H_0: \text{prop}=p_0 \) against one of the alternatives below.

- \(H_a: \text{prop} \neq p_0 \ (\text{prop} \neq p_0) \)
- \(H_a: \text{prop}<p_0 \ (\text{prop}<p_0) \)
- \(H_a: \text{prop}>p_0 \ (\text{prop}>p_0) \)

Input:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(x)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>2048</td>
<td>4040</td>
</tr>
</tbody>
</table>

\[\text{Prop} \approx p_0 \] \(\text{Prop} \approx p_0 \)

\[\text{Calculate Draw} \]

Calculated results:

<table>
<thead>
<tr>
<th>(\text{Prop} \approx 0.0000)</th>
<th>(z \approx 8810)</th>
<th>(p \approx 0.3703)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n \approx 4940.0000)</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Drawn results:

\[z \approx 0.01 \] \(p \approx 0.3705 \)
2-PropZTest

2-PropZTest (two-proportion z test; item 6) computes a test to compare the proportion of successes \((p_1 \text{ and } p_2) \) from two populations. It takes as input the count of successes in each sample \((x_1 \text{ and } x_2) \) and the count of observations in each sample \((n_1 \text{ and } n_2) \). 2-PropZTest tests the null hypothesis \(H_0: p_1 = p_2 \) (using the pooled sample proportion \(\hat{p} \)) against one of the alternatives below.

- \(H_a: p_1 \neq p_2 \) (\(p_1: \neq p_2 \))
- \(H_a: p_1 < p_2 \) (\(p_1: < p_2 \))
- \(H_a: p_1 > p_2 \) (\(p_1: > p_2 \))

Input:

```
2-PropZTest
x1: 145
n1: 161
x2: 138
n2: 152
p1: \neq p2 <p2 \neq p2
Calculate Draw
```

Calculated results:

```
2-PropZTest
p1: \neq p2
z = 1.4773
p = .1396
\#1 = .6377
\#2 = .6129
\#p = .6448
```

```
n1 = 161.0000
n2 = 152.0000
```

Drawn results:

```
z = 1.4773
p = .1396
```
ZInterval

ZInterval (one-sample z confidence interval; item 7) computes a confidence interval for an unknown population mean μ when the population standard deviation σ is known. The computed confidence interval depends on the user-specified confidence level.

In the example:

$L1=\{299.4, 297.7, 301, 298.9, 300.2, 297\}$

TInterval

TInterval (one-sample t confidence interval; item 8) computes a confidence interval for an unknown population mean μ when the population standard deviation σ is unknown. The computed confidence interval depends on the user-specified confidence level.

In the example:

$L6=\{1.6, 1.7, 1.8, 1.9\}$
2-SampZInt

2-SampZInt (two-sample \(z \) confidence interval; item 9) computes a confidence interval for the difference between two population means \((\mu_1 - \mu_2)\) when both population standard deviations \((\sigma_1\) and \(\sigma_2)\) are known. The computed confidence interval depends on the user-specified confidence level.

In the example:

\[
\text{LISTC} = \{154, 109, 137, 115, 140\} \\
\text{LISTD} = \{108, 115, 126, 92, 146\}
\]

<table>
<thead>
<tr>
<th>Data</th>
<th>Stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated results:</td>
<td>Calculated results:</td>
</tr>
<tr>
<td>((1.5446, 1.9554))</td>
<td>((-2.053, 2.056))</td>
</tr>
<tr>
<td>(\sigma_x = 1.75)</td>
<td>(\sigma_x = 1.75)</td>
</tr>
<tr>
<td>(n = 4)</td>
<td>(n = 4)</td>
</tr>
</tbody>
</table>

In the example:

\[
\text{LISTC} = \{154, 109, 137, 115, 140\} \\
\text{LISTD} = \{108, 115, 126, 92, 146\}
\]

<table>
<thead>
<tr>
<th>Data</th>
<th>Stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated results:</td>
<td>Calculated results:</td>
</tr>
<tr>
<td>((-10.08, -37.278))</td>
<td>((-10.08, -37.278))</td>
</tr>
<tr>
<td>(\sigma_1 = 13.5)</td>
<td>(\sigma_1 = 13.5)</td>
</tr>
<tr>
<td>(\sigma_2 = 13.5)</td>
<td>(\sigma_2 = 13.5)</td>
</tr>
<tr>
<td>(n_1 = 13)</td>
<td>(n_1 = 13)</td>
</tr>
<tr>
<td>(n_2 = 5)</td>
<td>(n_2 = 5)</td>
</tr>
<tr>
<td>(x_1 = 117.4)</td>
<td>(x_1 = 117.4)</td>
</tr>
<tr>
<td>(x_2 = 117.4)</td>
<td>(x_2 = 117.4)</td>
</tr>
<tr>
<td>(n = 5)</td>
<td>(n = 5)</td>
</tr>
</tbody>
</table>

n = 5.0000
2-SampTInt (two-sample t confidence interval; item 0) computes a confidence interval for the difference between two population means ($\mu_1 - \mu_2$) when both population standard deviations (σ_1 and σ_2) are unknown. The computed confidence interval depends on the user-specified confidence level.

In the example:

SAMP1={12.207, 16.869, 25.05, 22.429, 8.456, 10.589}
SAMP2={11.074, 9.686, 12.064, 9.351, 8.182, 6.642}
1-PropZInt

1-PropZInt (one-proportion z confidence interval; item A) computes a confidence interval for an unknown proportion of successes. It takes as input the count of successes in the sample x and the count of observations in the sample n. The computed confidence interval depends on the user-specified confidence level.

Input:

<table>
<thead>
<tr>
<th>1-PropZInt</th>
</tr>
</thead>
<tbody>
<tr>
<td>x:2048</td>
</tr>
<tr>
<td>n:3040</td>
</tr>
<tr>
<td>C-Level:99</td>
</tr>
<tr>
<td>Calculate</td>
</tr>
</tbody>
</table>

Calculated results:

<table>
<thead>
<tr>
<th>1-PropZInt</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.4867,0.5272)</td>
</tr>
<tr>
<td>#1=5069</td>
</tr>
<tr>
<td>n=4040,0000</td>
</tr>
</tbody>
</table>

2-PropZInt

2-PropZInt (two-proportion z confidence interval; item B) computes a confidence interval for the difference between the proportion of successes in two populations ($p_1 - p_2$). It takes as input the count of successes in each sample (x_1 and x_2) and the count of observations in each sample (n_1 and n_2). The computed confidence interval depends on the user-specified confidence level.

Input:

<table>
<thead>
<tr>
<th>2-PropZInt</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1:149</td>
</tr>
<tr>
<td>n1:161</td>
</tr>
<tr>
<td>x2:538</td>
</tr>
<tr>
<td>n2:62</td>
</tr>
<tr>
<td>C-Level:95</td>
</tr>
<tr>
<td>Calculate</td>
</tr>
</tbody>
</table>

Calculated results:

<table>
<thead>
<tr>
<th>2-PropZInt</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.0354,0.3474)</td>
</tr>
<tr>
<td>#1=9033</td>
</tr>
<tr>
<td>n2=62,0000</td>
</tr>
<tr>
<td>n2=62,0000</td>
</tr>
</tbody>
</table>
\(\chi^2 \)-Test

\(\chi^2 \)-Test (chi-square test; item C) computes a chi-square test for association on the two-way table of counts in the specified \textit{Observed} matrix. The null hypothesis \(H_0 \) for a two-way table is: no association exists between row variables and column variables. The alternative hypothesis is: the variables are related.

Before computing a \(\chi^2 \)-Test, enter the observed counts in a matrix. Enter that matrix variable name at the \textbf{Observed:} prompt in the \(\chi^2 \)-Test editor; default=[A]. At the \textbf{Expected:} prompt, enter the matrix variable name to which you want the computed expected counts to be stored; default=[B].

Matrix editor:

\[
\begin{bmatrix}
5.000 & 10.000 \\
11.000 & 15.000 \\
\end{bmatrix}
\]

Note: Press \texttt{2nd} [MATRX] 1 to select 1:[A] from the \textit{MATRIX EDIT} menu.

Input:

\[
\begin{align*}
\text{Observed: } & [A] \\
\text{Expected: } & [B] \\
\text{Calculate } & \text{Draw}
\end{align*}
\]

Calculated results:

\[
\chi^2 = 3.3750 \\
p = 0.1850 \\
df = 2.0000
\]

Note: Press \texttt{2nd} [MATRX] \(\downarrow \) \texttt{ENTER} to display matrix [B].

Drawn results:

\[
\chi^2 = 3.3750 \\
p = 0.1850
\]
\(\chi^2 \text{GOF-Test} \)

\(\chi^2 \text{GOF-Test} \) (Chi Square Goodness of Fit; item D) performs a test to confirm that sample data is from a population that conforms to a specified distribution. For example, \(\chi^2 \) GOF can confirm that the sample data came from a normal distribution.

In the example:
list 1=\{16, 25, 22, 8, 10\}
list 2=\{16.2, 21.6, 16.2, 14.4, 12.6\}

The Chi-square Goodness of Fit input screen:

Note: Press \(\text{STAT} \rightarrow \rightarrow \rightarrow \) to select \(\text{TESTS} \). Press \(\downarrow \) several times to select \(\text{D:X}^2\text{GOF-Test...} \) Press \(\text{ENTER} \). To enter data for df (degree of freedom), press \(\downarrow \downarrow \). Type 4.

Calculated results:

\(\chi^2=5.995149912 \)
\(p=.1995107739 \)
\(df=4 \)
\(\text{CNTRB=0.002469...} \)

Drawn results:
2-SampFTest

2-SampFTest (two-sample F-test; item E) computes an F-test to compare two normal population standard deviations (σ₁ and σ₂). The population means and standard deviations are all unknown.

2-SampFTest, which uses the ratio of sample variances Sx₁²/Sx₂², tests the null hypothesis H₀: σ₁=σ₂ against one of the alternatives below.

- Hₐ: σ₁≠σ₂ (σ₁≠σ₂)
- Hₐ: σ₁<σ₂ (σ₁<σ₂)
- Hₐ: σ₁>σ₂ (σ₁>σ₂)

In the example:

SAMP4={7, -4, 18, 17, -3, -5, 1, 10, 11, -2}
SAMP5={-1, 12, -1, -3, 3, -5, 5, 2, -11, -1, -3}
LinRegTTest

LinRegTTest (linear regression t test; item F) computes a linear regression on the given data and a t test on the value of slope β and the correlation coefficient ρ for the equation $y=\alpha+\beta x$. It tests the null hypothesis $H_0: \beta=0$ (equivalently, $\rho=0$) against one of the alternatives below.

- $H_a: \beta \neq 0$ and $\rho \neq 0$ (β & ρ: $\neq 0$)
- $H_a: \beta < 0$ and $\rho < 0$ (β & ρ: $<$ 0)
- $H_a: \beta > 0$ and $\rho > 0$ (β & ρ: $>$ 0)

The regression equation is automatically stored to **RegEQ** (VARS Statistics EQ secondary menu). If you enter a Y= variable name at the **RegEQ**: prompt, the calculated regression equation is automatically stored to the specified Y= equation. In the example below, the regression equation is stored to Y1, which is then selected (turned on).

In the example:

$L3=\{38, 56, 59, 64, 74\}$
$L4=\{41, 63, 70, 72, 84\}$

When **LinRegTTest** is executed, the list of residuals is created and stored to the list name **RESID** automatically. **RESID** is placed on the **LIST NAMES** menu.

Note: For the regression equation, you can use the fix-decimal mode setting to control the number of digits stored after the decimal point (Chapter 1). However, limiting the number of digits to a small number could affect the accuracy of the fit.
LinRegTInt

LinRegTInt computes a linear regression T confidence interval for the slope coefficient b. If the confidence interval contains 0, this is insufficient evidence to indicate that the data exhibits a linear relationship.

In the example:
list 1={4, 5, 6, 7, 8}
list 2={1, 2, 3, 3.5, 4.5}

Xlist, Ylist is the list of independent and dependent variables. The list containing the Freq (frequency) values for the data is stored in List. The default is 1. All elements must be real numbers. Each element in the Freq list is the frequency of occurrence for each corresponding data point in the input list specified in the List fields. RegEQ (optional) is the designated Yn variable for storing the regression equation. StoreRegEqn (optional) is the designated variable for storing the regression equation. The C level is the Confidence level probability with default = .95.

Note: Press \text{STAT} \rightarrow \text{TESTS} to select TESTS. Press \text{V} several times to select G:LinRegTint... Press \text{ENTER}. Press \text{V} several times to select Calculate. Press \text{ENTER}.

Calculated results:
\[
y = 3 + bx \\
(0.69098, 1.0091) \\
b = 3 \\
s = 0.158113883 \\
a = -2.3
\]

Xlist, Ylist is the list of independent and dependent variables. The list containing the Freq (frequency) values for the data is stored in List. The default is 1. All elements must be real numbers. Each element in the Freq list is the frequency of occurrence for each corresponding data point in the input list specified in the List fields. RegEQ (optional) is the designated Yn variable for storing the regression equation. StoreRegEqn (optional) is the designated variable for storing the regression equation. The C level is the Confidence level probability with default = .95.
ANOVA((one-way analysis of variance; item H) computes a one-way analysis of variance for comparing the means of two to 20 populations. The ANOVA procedure for comparing these means involves analysis of the variation in the sample data. The null hypothesis H_0: $\mu_1 = \mu_2 = ... = \mu_k$ is tested against the alternative H_a: not all $\mu_1, ..., \mu_k$ are equal.

ANOVA(list1, list2[, ..., list20])

In the example:

L1={7 4 6 6 5}
L2={6 5 5 8 7}
L3={4 7 6 7 6}

Note: SS is sum of squares and MS is mean square.
Inferential Statistics Input Descriptions

The tables in this section describe the inferential statistics inputs discussed in this chapter. You enter values for these inputs in the inferential stat editors. The tables present the inputs in the same order that they appear in this chapter.

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_0</td>
<td>Hypothesized value of the population mean that you are testing.</td>
</tr>
<tr>
<td>σ</td>
<td>The known population standard deviation; must be a real number > 0.</td>
</tr>
<tr>
<td>List</td>
<td>The name of the list containing the data you are testing.</td>
</tr>
<tr>
<td>Freq</td>
<td>The name of the list containing the frequency values for the data in List. Default=1. All elements must be integers ≥ 0.</td>
</tr>
<tr>
<td>Calculate/Draw</td>
<td>Determines the type of output to generate for tests and intervals. Calculate displays the output on the home screen. In tests, Draw draws a graph of the results.</td>
</tr>
<tr>
<td>\bar{x}, Sx, n</td>
<td>Summary statistics (mean, standard deviation, and sample size) for the one-sample tests and intervals.</td>
</tr>
<tr>
<td>σ_1</td>
<td>The known population standard deviation from the first population for the two-sample tests and intervals. Must be a real number > 0.</td>
</tr>
<tr>
<td>σ_2</td>
<td>The known population standard deviation from the second population for the two-sample tests and intervals. Must be a real number > 0.</td>
</tr>
<tr>
<td>List1, List2</td>
<td>The names of the lists containing the data you are testing for the two-sample tests and intervals. Defaults are L1 and L2, respectively.</td>
</tr>
<tr>
<td>Freq1, Freq2</td>
<td>The names of the lists containing the frequencies for the data in List1 and List2 for the two-sample tests and intervals. Defaults=1. All elements must be integers ≥ 0.</td>
</tr>
<tr>
<td>$\bar{x}_1, Sx_1, n_1, \bar{x}_2, Sx_2, n_2$</td>
<td>Summary statistics (mean, standard deviation, and sample size) for sample one and sample two in the two-sample tests and intervals.</td>
</tr>
<tr>
<td>Pooled</td>
<td>Specifies whether variances are to be pooled for 2-SampTTest and 2-SampTInt. No instructs the TI-84 Plus not to pool the variances. Yes instructs the TI-84 Plus to pool the variances.</td>
</tr>
<tr>
<td>p_0</td>
<td>The expected sample proportion for 1-PropZTest. Must be a real number, such that $0 < p_0 < 1$.</td>
</tr>
<tr>
<td>x</td>
<td>The count of successes in the sample for the 1-PropZTest and 1-PropZInt. Must be an integer ≥ 0.</td>
</tr>
<tr>
<td>n</td>
<td>The count of observations in the sample for the 1-PropZTest and 1-PropZInt. Must be an integer > 0.</td>
</tr>
<tr>
<td>x_1</td>
<td>The count of successes from sample one for the 2-PropZTest and 2-PropZInt. Must be an integer ≥ 0.</td>
</tr>
<tr>
<td>x_2</td>
<td>The count of successes from sample two for the 2-PropZTest and 2-PropZInt. Must be an integer ≥ 0.</td>
</tr>
</tbody>
</table>
Chapter 13: Inferential Statistics and Distributions

Test and Interval Output Variables

The inferential statistics variables are calculated as indicated below. To access these variables for use in expressions, press [VARS] 5 (5:Statistics), and then select the VARS menu listed in the last column below.

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n1</td>
<td>The count of observations in sample one for the 2-PropZTest and 2-PropZInt. Must be an integer > 0.</td>
</tr>
<tr>
<td>n2</td>
<td>The count of observations in sample two for the 2-PropZTest and 2-PropZInt. Must be an integer > 0.</td>
</tr>
<tr>
<td>C-Level</td>
<td>The confidence level for the interval instructions. Must be ≥ 0 and < 100. If it is ≥ 1, it is assumed to be given as a percent and is divided by 100. Default=0.95.</td>
</tr>
<tr>
<td>Observed (Matrix)</td>
<td>The matrix name that represents the columns and rows for the observed values of a two-way table of counts for the (\chi^2)-Test and (\chi^2) GOF-Test. Observed must contain all integers ≥ 0. Matrix dimensions must be at least 2×2.</td>
</tr>
<tr>
<td>Expected (Matrix)</td>
<td>The matrix name that specifies where the expected values should be stored. Expected is created upon successful completion of the (\chi^2)-Test and (\chi^2) GOF-Test.</td>
</tr>
<tr>
<td>df</td>
<td>df (degree of freedom) represents (number of sample categories) - (number of estimated parameters for the selected distribution + 1).</td>
</tr>
<tr>
<td>Xlist, Ylist</td>
<td>The names of the lists containing the data for LinRegTTest and LinRegTInt. Defaults are L1 and L2, respectively. The dimensions of Xlist and Ylist must be the same.</td>
</tr>
<tr>
<td>RegEQ</td>
<td>The prompt for the name of the (Y=) variable where the calculated regression equation is to be stored. If a (Y=) variable is specified, that equation is automatically selected (turned on). The default is to store the regression equation to the RegEQ variable only.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th>Tests</th>
<th>Intervals</th>
<th>LinRegTTest, ANOVA</th>
<th>VARS Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-value</td>
<td>p</td>
<td>p</td>
<td>TEST</td>
<td></td>
</tr>
<tr>
<td>test statistics</td>
<td>z, t, (\chi^2), (F)</td>
<td>t, (F)</td>
<td>TEST</td>
<td></td>
</tr>
<tr>
<td>degrees of freedom</td>
<td>df</td>
<td>df</td>
<td>df</td>
<td>TEST</td>
</tr>
<tr>
<td>sample mean of x values for sample 1 and sample 2</td>
<td>(\bar{x}_1, \bar{x}_2)</td>
<td>(\bar{x}_1, \bar{x}_2)</td>
<td>TEST</td>
<td></td>
</tr>
<tr>
<td>sample standard deviation of x for sample 1 and sample 2</td>
<td>(Sx_1, Sx_2)</td>
<td>(Sx_1, Sx_2)</td>
<td>TEST</td>
<td></td>
</tr>
<tr>
<td>number of data points for sample 1 and sample 2</td>
<td>(n_1, n_2)</td>
<td>(n_1, n_2)</td>
<td>TEST</td>
<td></td>
</tr>
<tr>
<td>pooled standard deviation</td>
<td>(Sx_P)</td>
<td>(Sx_P)</td>
<td>(Sx_P)</td>
<td>TEST</td>
</tr>
</tbody>
</table>

The inferential statistics variables are calculated as indicated below. To access these variables for use in expressions, press [VARS] 5 (5:Statistics), and then select the VARS menu listed in the last column below.
Distribution Functions

DISTR menu

Note: Selection of any of the DISTR functions will take the user to a wizard screen for that function.

To display the DISTR menu, press \[\text{2nd} \, \text{[DISTR]}\].

DISTR DRAW

1: normalpdf(\[nn\] probability density function
2: normalcdf(\[nn\] cumulative distribution function
3: invNorm(Inverse cumulative normal distribution
4: invT(Inverse cumulative Student-\(\tau \) distribution
5: tpdf(Student-\(\tau \) probability density
6: tcdf(Student-\(\tau \) distribution probability
7: \(\chi^2 \)pdf(Chi-square probability density
8: \(\chi^2 \)cdf Chi-square distribution probability
9: \(F \)pdf(\(F \) probability density
0: \(F \)cdf(\(F \) distribution probability

Note: The variables listed above cannot be archived.
Note: \(-1 \times 99\) and \(1 \times 99\) specify infinity. If you want to view the area left of `upperbound`, for example, specify `lowerbound = -1 \times 99`.

normalpdf()

`normalpdf()` computes the probability density function (pdf) for the normal distribution at a specified `x` value. The defaults are mean \(\mu=0\) and standard deviation \(\sigma=1\). To plot the normal distribution, paste `normalpdf()` to the Y= editor. The probability density function (pdf) is:

\[
f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \sigma > 0
\]

Note: For this example, \(X_{\text{min}} = 28\), \(X_{\text{max}} = 42\), \(X_{\text{scl}} = 1\), \(Y_{\text{min}} = 0\), \(Y_{\text{max}} = .2\), \(Y_{\text{scl}} = .1\)

normalcdf()

`normalcdf()` computes the normal distribution probability between `lowerbound` and `upperbound` for the specified mean \(\mu\) and standard deviation \(\sigma\). The defaults are \(\mu=0\) and \(\sigma=1\).
\textbf{normalcdf((lowerbound,upperbound[,\mu,\sigma])}

\begin{align*}
\text{normalcdf}(-1.99, 36, 35, 2) & = 0.6914624678
\end{align*}

\textit{invNorm()}

\textit{invNorm(} computes the inverse cumulative normal distribution function for a given \textit{area} under the normal distribution curve specified by mean \(\mu \) and standard deviation \(\sigma \). It calculates the \(x \) value associated with an \textit{area} to the left of the \(x \) value. \(0 \leq \text{area} \leq 1 \) must be true. The defaults are \(\mu = 0 \) and \(\sigma = 1 \).

\begin{align*}
\text{invNorm(area[,\mu,\sigma])}
\end{align*}

\begin{align*}
\text{invNorm}(0.6914624678, 35, 2) & = 36.00000004
\end{align*}

\textit{invT(}

\textit{invT(} computes the inverse cumulative Student-t probability function specified by Degree of Freedom, \(df \) for a given Area under the curve.

\begin{align*}
\text{invT(area,df)}
\end{align*}

\begin{align*}
\text{invT}(0.95, 24) & = 1.710882023
\end{align*}

\textit{tpdf(}

\textit{tpdf(} computes the probability density function (pdf) for the Student-t distribution at a specified \(x \) value. \(df \) (degrees of freedom) must be > 0. To plot the Student-t distribution, paste \texttt{tpdf()} to the Y= editor. The probability density function (pdf) is:

\begin{align*}
\text{pdf} & = \frac{\Gamma((df + 1)/2)}{\Gamma(df/2)} \frac{(1 + x^2/df)^{-(df+1)/2}}{\sqrt{\pi df}}
\end{align*}
tpdf(x, df)

Note: For this example, $X_{\text{min}} = -4.5, X_{\text{max}} = 4.5, Y_{\text{min}} = 0, Y_{\text{max}} = 0.4$

tcdf(x)

tcdf computes the Student-t distribution probability between lowerbound and upperbound for the specified df (degrees of freedom), which must be > 0.

tcdf(lowerbound, upperbound, df)

χ^2pdf(x)

χ^2pdf computes the probability density function (pdf) for the χ^2 (chi-square) distribution at a specified x value. df (degrees of freedom) must be an integer > 0. To plot the χ^2 distribution, paste χ^2pdf to the Y= editor. The probability density function (pdf) is:

$$f(x) = \frac{1}{\Gamma(df/2)} \left(\frac{x}{2}\right)^{df/2} e^{-x/2}, x \geq 0$$
\(\chi^2 \text{pdf}(x, df) \)

Note: For this example,
- \(\text{Xmin} = 0 \)
- \(\text{Xmax} = 30 \)
- \(\text{Ymin} = .02 \)
- \(\text{Ymax} = .132 \)

\(\chi^2 \text{cdf}(\text{lowerbound, upperbound, df}) \)

\(\chi^2 \text{cdf} \) computes the \(\chi^2 \) (chi-square) distribution probability between \textit{lowerbound} and \textit{upperbound} for the specified \textit{df} (degrees of freedom), which must be an integer > 0.

\[\chi^2 \text{cdf}(0, 19.023, 9) \]
- .9750019601

\(F \text{pdf}(\text{x}) \)

\(F \text{pdf} \) computes the probability density function (pdf) for the \(F \) distribution at a specified \(x \) value. \textit{numerator df} (degrees of freedom) and \textit{denominator df} must be integers > 0. To plot the \(F \) distribution, paste \(F \text{pdf} \) to the Y= editor. The probability density function (pdf) is:

\[f(x) = \frac{\Gamma((n + d)/2) (n/2)^{n/2} x^{n/2 - 1} (1 + nx/d)^{-(n + d)/2}}{\Gamma(n/2) \Gamma(d/2)} \quad x \geq 0 \]

where
- \(n = \) numerator degrees of freedom
- \(d = \) denominator degrees of freedom
Fpdf

\[Fpdf(x, \text{numerator df}, \text{denominator df}) \]

Note: For this example,
- \(X_{\text{min}} = 0 \)
- \(X_{\text{max}} = 5 \)
- \(Y_{\text{min}} = 0 \)
- \(Y_{\text{max}} = 1 \)

Fcdf

\[Fcdf(\text{lowerbound}, \text{upperbound}, \text{numerator df}, \text{denominator df}) \]

binoppdf

\[\text{binoppdf}(\text{numtrials}, p, x) \]

\[f(x) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, \ldots, n \]

where \(n = \text{numtrials} \)
binomcdf()

binomcdf() computes a cumulative probability at \(x \) for the discrete binomial distribution with the specified \(\text{numtrials} \) and probability of success \((p) \) on each trial. \(x \) can be a real number or a list of real numbers. \(0 \leq p \leq 1 \) must be true. \(\text{numtrials} \) must be an integer > 0. If you do not specify \(x \), a list of cumulative probabilities is returned.

\[
\text{binomcdf}(\text{numtrials}, p, [x])
\]

\[
\text{binomcdf}(5, 0.6, \{3, 4.5\})
\]

poissonpdf()

poissonpdf() computes a probability at \(x \) for the discrete Poisson distribution with the specified mean \(\mu \), which must be a real number > 0. \(x \) can be an integer or a list of integers. The probability density function (pdf) is:

\[
f(x) = e^{-\mu} \frac{\mu^x}{x!}, x = 0,1,2,
\]

\[
\text{poissonpdf}(\mu, x)
\]

\[
\text{poissonpdf}(6, 10)
\]

\[
0.041393934
\]

density

\[
\lambda = 6\
\times \
\text{value} = 10
\]

\[
\text{poissoncdf}(\mu, x)
\]

\[
\text{poissoncdf}(0.126, \{0, 1, 2, 3\})
\]

\[
\{0.84161468, 0.9...
\]

density

\[
\lambda = 0.126\
\times \
\text{value} = \{0, 1, 2, 3\}
\]
Chapter 13: Inferential Statistics and Distributions

geometpdf(geometpdf(computes a probability at \(x \), the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success \(p \). \(0 \leq p \leq 1 \) must be true. \(x \) can be an integer or a list of integers. The probability density function (pdf) is:

\[
f(x) = p(1-p)^{x-1}, \ x = 1,2,...
\]

geometpdf(geometpdf(\(p,x \) \)

geometcdf(geometcdf(computes a cumulative probability at \(x \), the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success \(p \). \(0 \leq p \leq 1 \) must be true. \(x \) can be a real number or a list of real numbers.

geometcdf(geometcdf(\(p,x \) \)

Distribution Shading

DISTR DRAW Menu

To display the DISTR DRAW menu, press [2nd] [DISTR] [2]. DISTR DRAW instructions draw various types of density functions, shade the area specified by lowerbound and upperbound, and display the computed area value.

Selecting an item from the DISTR DRAW menu opens a wizard for the input of syntax for that item. Some of the arguments are optional. If an argument is not optional, the cursor will not move on to the next argument until a value is entered.

If you access any of these functions through CATALOG, the command or function will paste and you will be required to fill in the arguments.

To clear the drawings, select 1:ClrDraw from the DRAW menu (Chapter 8).
Note: Before you execute a DISTR DRAW instruction, you must set the window variables so that the desired distribution fits the screen.

DISTR DRAW

1: ShadeNorm(Shades normal distribution.
2: Shade_t(Shades Student-\(t \) distribution.
3: Shade\(\chi^2 \)(Shades \(\chi^2 \) distribution.
4: ShadeF(Shades F distribution.

Note: -1E99 and 1E99 specify infinity. If you want to view the area left of upperbound, for example, specify lowerbound=-1E99.

ShadeNorm(

\text{ShadeNorm} \) draws the normal density function specified by mean \(\mu \) and standard deviation \(\sigma \) and shades the area between lowerbound and upperbound. The defaults are \(\mu=0 \) and \(\sigma=1 \).

\text{ShadeNorm}(\text{lowerbound,upperbound},[\mu,\sigma])

Note: For this example,
Xmin = 55
Xmax = 72
Ymin = -.05
Ymax = .2

Shade_t(

\text{Shade}_t \) draws the density function for the Student-\(t \) distribution specified by \(df \) (degrees of freedom) and shades the area between lowerbound and upperbound.

\text{Shade}_{t}(\text{lowerbound,upperbound},df)

Note: For this example,
Xmin = -3
Xmax = 3
Ymin = -.15
Ymax = .5
Shade\(\chi^2\)\(\)

Shade\(\chi^2\)(draws the density function for the \(\chi^2\) (chi-square) distribution specified by \(df\) (degrees of freedom) and shades the area between lowerbound and upperbound.

\[
\text{Shade}\chi^2(\text{lowerbound},\text{upperbound},\text{df})
\]

\[
\text{Note: For this example, Xmin = 0, Xmax = 35, Ymin = -.025, Ymax = .1}
\]

Shade\(F\)

Shade\(F\) draws the density function for the \(F\) distribution specified by numerator \(df\) (degrees of freedom) and denominator \(df\) and shades the area between lowerbound and upperbound.

\[
\text{Shade}F(\text{lowerbound},\text{upperbound},\text{numerator df},\text{denominator df})
\]

\[
\text{Note: For this example, Xmin = 0, Xmax = 5, Ymin = -.25, Ymax = .9}
\]
Chapter 14: Applications

The Applications Menu

The TI-84 Plus comes with several applications already installed and listed on the APPLICATIONS menu. These applications include the following:

Finance
Topics in Algebra 1
Science Tools
Catalog Help 1.1
CellSheet™
Conic Graphing
Inequality Graphing
Transformation Graphing
Vernier EasyData™
DataMate
Polynomial Root Finder and Simultaneous Equation Solver
StudyCards™
LearningCheck™

Except for the Finance application, you can add and remove applications as space permits. The Finance application is built into the TI-84 Plus code and cannot be deleted.

Many other applications in addition to the ones mentioned above, including language localization applications, are included on your TI-84 Plus. Press [APPS] to see the complete list of applications that came with your calculator.

You can download additional TI-84 Plus software applications from education.ti.com that allow you to customize your calculator’s functionality even further. The calculator reserves 1.54 M of space within ROM memory specifically for applications.

Guidebooks for applications are on the Texas Instruments Web site at: education.ti.com/guides.

Steps for Running the Finance Application

Follow these basic steps when using the Finance application.

1. Press [APPS] [ENTER] to select the Finance application.
Getting Started: Financing a Car

You have found a car you would like to buy. You can afford payments of 250 per month for four years. The car costs 9,000. Your bank offers an interest rate of 5%. What will your payments be? Can you afford it?

1. Press \textit{MODE} \textbf{a} \textbf{a} \textbf{a} \textbf{a} \text{ENTER} to set the fixed-decimal mode setting to 2.

2. Press \textit{APPS} \text{ENTER} to select \textbf{1:Finance} from the \textbf{APPLICATIONS} menu.

3. Press \text{ENTER} to select \textbf{1:TVM Solver} from the \textbf{CALC VARS} menu. The TVM Solver is displayed.

4. Enter the data:
 \begin{itemize}
 \item \textit{N} (number of payments)= 48
 \item \textit{I\%} (interest rate)=5
 \item \textit{PV} (present value)=9000
 \item \textit{FV} (future value)=0
 \item \textit{P/Y} (payments per year)=12
 \item \textit{C/Y} (compounding periods per year)=12
 \end{itemize}

5. Select \textbf{PMT:END}, which indicates that payments are due at the end of each period.

6. Move the cursor to \textit{PMT} and press \textit{ALPHA} [\text{SOLVE}]. Can you afford the payment?
Getting Started: Computing Compound Interest

At what annual interest rate, compounded monthly, will 1,250 accumulate to 2,000 in 7 years?

Note: Because there are no payments when you solve compound interest problems, PMT must be set to 0 and P/Y must be set to 1.

1. Press \texttt{APPS} \texttt{ENTER} to select 1:Finance from the \texttt{APPLICATIONS} menu.

2. Press \texttt{ENTER} to select 1:TVM Solver from the \texttt{CALC} \texttt{VARS} menu. The TVM Solver is displayed.

3. Enter the data:
 \begin{align*}
 N &= 7 \\
 PV &= -1250 \\
 PMT &= 0 \\
 FV &= 2000 \\
 P/Y &= 1 \\
 C/Y &= 12
 \end{align*}

4. Move the cursor to \% and press \texttt{ALPHA} \texttt{SOLVE}. You need to look for an interest rate of 6.73\% to grow 1250 to 2000 in 7 years.

Using the TVM Solver

Using the TVM Solver

The TVM Solver displays the time-value-of-money (TVM) variables. Given four variable values, the TVM Solver solves for the fifth variable.

The \texttt{FINANCE VARS} menu section describes the five TVM variables (\texttt{N}, \texttt{I\%}, \texttt{PV}, \texttt{PMT}, and \texttt{FV}) and \texttt{P/Y} and \texttt{C/Y}.

\texttt{PMT: END BEGIN} in the TVM Solver corresponds to the \texttt{FINANCE CALC} menu items \texttt{Pmt_End} (payment at the end of each period) and \texttt{Pmt_Bgn} (payment at the beginning of each period).

To solve for an unknown TVM variable, follow these steps.

1. Press \texttt{APPS} \texttt{ENTER} \texttt{ENTER} to display the TVM Solver. The screen below shows the default values with the fixed-decimal mode set to two decimal places.
2. Enter the known values for four TVM variables.

 Note: Enter cash inflows as positive numbers and cash outflows as negative numbers.

3. Enter a value for P/Y, which automatically enters the same value for C/Y; if $P/Y \neq C/Y$, enter a unique value for C/Y.

4. Select **END** or **BEGIN** to specify the payment method.

5. Place the cursor on the TVM variable for which you want to solve.

6. Press [ALPHA][SOLVE]. The answer is computed, displayed in the TVM Solver, and stored to the appropriate TVM variable. An indicator square in the left column designates the solution variable.

Using the Financial Functions

Entering Cash Inflows and Cash Outflows

When using the TI-84 Plus financial functions, you must enter cash inflows (cash received) as positive numbers and cash outflows (cash paid) as negative numbers. The TI-84 Plus follows this convention when computing and displaying answers.

FINANCE CALC Menu

To display the **FINANCE CALC** menu, press `[APPS] [ENTER].

<table>
<thead>
<tr>
<th>CALC_VARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: TVM Solver... Displays the TVM Solver.</td>
</tr>
<tr>
<td>2: tvm_Pmt Computes the amount of each payment.</td>
</tr>
<tr>
<td>3: tvm_I% Computes the interest rate per year.</td>
</tr>
<tr>
<td>4: tvm_PV Computes the present value.</td>
</tr>
<tr>
<td>5: tvm_N Computes the number of payment periods.</td>
</tr>
<tr>
<td>6: tvm_FV Computes the future value.</td>
</tr>
<tr>
<td>7: npv() Computes the net present value.</td>
</tr>
</tbody>
</table>
Use these functions to set up and perform financial calculations on the home screen.

TVM Solver

TVM Solver displays the TVM Solver.

Calculating Time Value of Money (TVM)

Calculating Time Value of Money

Use time-value-of-money (TVM) functions (menu items 2 through 6) to analyze financial instruments such as annuities, loans, mortgages, leases, and savings.

Each TVM function takes zero to six arguments, which must be real numbers. The values that you specify as arguments for TVM functions are not stored to the TVM variables.

Note: To store a value to a TVM variable, use the TVM Solver or use `STO` and any TVM variable on the FINANCE VARS menu.

If you enter less than six arguments, the TI-84 Plus substitutes a previously stored TVM variable value for each unspecified argument.

If you enter any arguments with a TVM function, you must place the argument or arguments in parentheses.
tvm_Pmt

tvm_Pmt computes the amount of each payment.

\[tvm_Pmt([N, I\%, PV, FV, P/Y, C/Y]) \]

<table>
<thead>
<tr>
<th>N</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>I%</td>
<td>8.5</td>
</tr>
<tr>
<td>PV</td>
<td>100000</td>
</tr>
<tr>
<td>PMT</td>
<td>0</td>
</tr>
<tr>
<td>FV</td>
<td>0</td>
</tr>
<tr>
<td>P/Y</td>
<td>12</td>
</tr>
<tr>
<td>C/Y</td>
<td>12</td>
</tr>
<tr>
<td>PMT</td>
<td>BEGIN</td>
</tr>
</tbody>
</table>

Note: In the example above, the values are stored to the TVM variables in the TVM Solver. The payment (tvm_Pmt) is computed on the home screen using the values in the TVM Solver. Next, the interest rate is changed to 9.5 to illustrate the effect on the payment amount.

tvm_I%

tvm_I% computes the annual interest rate.

\[tvm_I\%([N, PV, PMT, FV, P/Y, C/Y]) \]

<table>
<thead>
<tr>
<th>tvm_I%</th>
<th>48, 10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ans→I%</td>
<td>9.24</td>
</tr>
</tbody>
</table>

tvm_PV

tvm_PV computes the present value.

\[tvm_PV([N, I\%, PMT, FV, P/Y, C/Y]) \]

<table>
<thead>
<tr>
<th>tvm_PV</th>
<th>360, 11, -10500.63</th>
</tr>
</thead>
</table>

tvm_N

tvm_N computes the number of payment periods.
\(tvm_N[[I\%, PV, PMT, FV, P/Y, C/Y]] \)

\[
\begin{array}{c}
\text{MathPrint™} \\
\dfrac{tvm_N(6, 9000, -3)}{36.47} \\
\text{Classic} \\
\dfrac{tvm_N(6, 9000, -3)}{36.47}
\end{array}
\]

\(tvm_FV \)

\(tvm_FV \) computes the future value.

\(tvm_FV([[N, I\%, PV, PMT, P/Y, C/Y]] \)

\[
\begin{array}{c}
\text{MathPrint™} \\
\dfrac{tvm_FV(6, 8, -550)}{8727.81} \\
\text{Classic} \\
\dfrac{tvm_FV(6, 8, -550)}{8727.81}
\end{array}
\]

Calculating Cash Flows

Calculating a Cash Flow

Use the cash flow functions (menu items 7 and 8) to analyze the value of money over equal time periods. You can enter unequal cash flows, which can be cash inflows or outflows. The syntax descriptions for \texttt{npv(} and \texttt{irr(} use these arguments.

- \textit{interest rate} is the rate by which to discount the cash flows (the cost of money) over one period.
- \textit{CF0} is the initial cash flow at time 0; it must be a real number.
- \textit{CFList} is a list of cash flow amounts after the initial cash flow \texttt{CF0}.
- \textit{CFFreq} is a list in which each element specifies the frequency of occurrence for a grouped (consecutive) cash flow amount, which is the corresponding element of \texttt{CFList}. The default is 1; if you enter values, they must be positive integers < 10,000.

For example, express this uneven cash flow in lists.
\[CF_0 = 2000 \]
\[CFList = \{2000, -3000, 4000\} \]
\[CFFreq = \{2, 1, 2\} \]

\[\text{npv}, \text{irr} \]

\text{npv} (net present value) is the sum of the present values for the cash inflows and outflows. A positive result for \text{npv} indicates a profitable investment.

\[\text{npv}(\text{interest rate}, \text{CF}_0, \text{CFList}[\text{CFFreq}]) \]

\text{irr} (internal rate of return) is the interest rate at which the net present value of the cash flows is equal to zero.

\[\text{irr}(\text{CF}_0, \text{CFList}[\text{CFFreq}]) \]

\begin{center}
\begin{tikzpicture}
\draw [->] (-3,0) -- (3,0);
\draw [->] (0,-3) -- (0,3);
\draw (1,0) -- (1,1);
\draw (1,0) -- (1,-1);
\draw (2,0) -- (2,1);
\draw (2,0) -- (2,-1);
\draw (3,0) -- (3,1);
\draw (3,0) -- (3,-1);
\node at (1,1) {1000};
\node at (1,-1) {-2000};
\node at (2,1) {0};
\node at (2,-1) {-2500};
\node at (3,1) {5000};
\node at (3,-1) {3000};
\end{tikzpicture}
\end{center}

\begin{align*}
\{1000, -2500, 0, 50, 0, 3000\} & & \text{npv}(6, -2000, L1) = 2928.65 \\
\text{npv}(6, -2000, L1) & & \text{irr}(6, -2000, L1) = 27.98
\end{align*}

\section*{Calculating Amortization}

\subsection*{Calculating an Amortization Schedule}

Use the amortization functions (menu items 9, 0, and A) to calculate balance, sum of principal, and sum of interest for an amortization schedule.

\text{bal}(

\text{bal} computes the balance for an amortization schedule using stored values for I\%, PV, and PMT. \text{npmt} is the number of the payment at which you want to calculate a balance. It must be a positive integer < 10,000. \text{roundvalue} specifies the internal precision the calculator uses to calculate the balance; if you do not specify \text{roundvalue}, then the TI-84 Plus uses the current \text{Float/Fix} decimal-mode setting.
Chapter 14: Applications 259

bal(npmt[roundvalue])

GPrn(, GInt(

GPrn(computes the sum of the principal during a specified period for an amortization schedule using stored values for I%, PV, and PMT. pmt1 is the starting payment. pmt2 is the ending payment in the range. pmt1 and pmt2 must be positive integers < 10,000. roundvalue specifies the internal precision the calculator uses to calculate the principal; if you do not specify roundvalue, the TI-84 Plus uses the current Float/Fix decimal-mode setting.

Note: You must enter values for I%, PV, PMT, and before computing the principal.

GInt(pmt1,pmt2[roundvalue])

GInt(computes the sum of the interest during a specified period for an amortization schedule using stored values for I%, PV, and PMT. pmt1 is the starting payment. pmt2 is the ending payment in the range. pmt1 and pmt2 must be positive integers < 10,000. roundvalue specifies the internal precision the calculator uses to calculate the interest; if you do not specify roundvalue, the TI-84 Plus uses the current Float/Fix decimal-mode setting.

Amortization Example: Calculating an Outstanding Loan Balance

You want to buy a home with a 30-year mortgage at 8 percent APR. Monthly payments are 800. Calculate the outstanding loan balance after each payment and display the results in a graph and in the table.

1. Press MODE. Press 2 ENTER to set the fixed-decimal mode setting to 2. Press 2 ENTER to select Par graphing mode.

2. Press APPS ENTER ENTER to display the TVM Solver.
3. Press 360 to enter number of payments. Press 8 to enter the interest rate. Press 800 to enter the payment amount. Press 0 to enter the future value of the mortgage. Press 12 to enter the payments per year, which also sets the compounding periods per year to 12. Press ENTER to select PMT:END.

4. Move the cursor to the PV prompt and then press ALPHA [SOLVE] to solve for the present value.

5. Press to display the parametric Y= editor. Turn off all stat plots. Press X,T,0,π to define X1T as T. Press APPS ENTER 9 X,T,0,π to define Y1T as bal(T).

6. Press WINDOW to display the window variables. Enter the values below:

<table>
<thead>
<tr>
<th>Tm in = 0</th>
<th>Xm in = 0</th>
<th>Ym in = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tmax=360</td>
<td>Xmax=360</td>
<td>Ymax=125000</td>
</tr>
<tr>
<td>Tstep=12</td>
<td>Xscl=50</td>
<td>Yscl=10000</td>
</tr>
</tbody>
</table>

7. Press TRACE to draw the graph and activate the trace cursor. Press and to explore the graph of the outstanding balance over time. Press a number and then press ENTER to view the balance at a specific time T.

8. Press 2nd [TBLSET] and enter the values below.

<table>
<thead>
<tr>
<th>TblStart=0</th>
<th>△Tlb=12</th>
</tr>
</thead>
</table>

9. Press 2nd [TABLE] to display the table of outstanding balances (Y1T).

10. Press MODE and select G-T split-screen mode, so that the graph and table are displayed simultaneously. Press TRACE to display X1T (time) and Y1T (balance) in the table.
Calculating Interest Conversion

Calculating an Interest Conversion

Use the interest conversion functions (menu items B and C) to convert interest rates from an annual effective rate to a nominal rate ($\text{Nom}()$) or from a nominal rate to an annual effective rate ($\text{Eff}()$).

$\text{Nom}()$

Nom computes the nominal interest rate. effective rate and compounding periods must be real numbers. compounding periods must be >0.

$\text{Nom}(\text{effective rate}, \text{compounding periods})$

$\begin{array}{c}
\text{Nom}(15.8\% , 42) \\
15.06
\end{array}$

$\text{Eff}()$

Eff computes the effective interest rate. nominal rate and compounding periods must be real numbers. compounding periods must be >0.

$\text{Eff}(\text{nominal rate}, \text{compounding periods})$

$\begin{array}{c}
\text{Eff}(8.12) \\
8.30
\end{array}$

Finding Days between Dates/Defining Payment Method

$\text{dbd}()$

Use the date function dbd (menu item D) to calculate the number of days between two dates using the actual-day-count method. date1 and date2 can be numbers or lists of numbers within the range of the dates on the standard calendar.

Note: Dates must be between the years 1950 through 2049.

$\text{dbd}(\text{date1}, \text{date2})$

You can enter date1 and date2 in either of two formats.

- MM.DDYY (United States)
- DDMM.YY (Europe)
The decimal placement differentiates the date formats.

\[
\begin{array}{c|c}
\text{MathPrint™} & \text{Classic} \\
\hline
\text{dbd(12.3190,12.3)} & \text{dbd(12.3190,12.3)} \\
731.00 & 731.00
\end{array}
\]

Defining the Payment Method

Pmt_End and Pmt_Bgn (menu items E and F) specify a transaction as an ordinary annuity or an annuity due. When you execute either command, the TVM Solver is updated.

Pmt_End

Pmt_End (payment end) specifies an ordinary annuity, where payments occur at the end of each payment period. Most loans are in this category. Pmt_End is the default.

Pmt_End

On the TVM Solver’s **PMT:END BEGIN** line, select **END** to set PMT to ordinary annuity.

Pmt_Bgn

Pmt_Bgn (payment beginning) specifies an annuity due, where payments occur at the beginning of each payment period. Most leases are in this category.

Pmt_Bgn

On the TVM Solver’s **PMT:END BEGIN** line, select **BEGIN** to set PMT to annuity due.

Using the TVM Variables

FINANCE VARS Menu

To display the **FINANCE VARS** menu, press [APPS] [ENTER] [B]. You can use TVM variables in TVM functions and store values to them on the home screen.

<table>
<thead>
<tr>
<th>CALC VARS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: N</td>
<td>Total number of payment periods</td>
</tr>
<tr>
<td>2: I%</td>
<td>Annual interest rate</td>
</tr>
<tr>
<td>3: PV</td>
<td>Present value</td>
</tr>
<tr>
<td>4: PMT</td>
<td>Payment amount</td>
</tr>
<tr>
<td>5: FV</td>
<td>Future value</td>
</tr>
<tr>
<td>6: P/Y</td>
<td>Number of payment periods per year</td>
</tr>
</tbody>
</table>
N, I%, PV, PMT, FV are the five TVM variables. They represent the elements of common financial transactions, as described in the table above. I% is an annual interest rate that is converted to a per-period rate based on the values of P/Y and C/Y.

P/Y and C/Y

P/Y is the number of payment periods per year in a financial transaction.

C/Y is the number of compounding periods per year in the same transaction.

When you store a value to P/Y, the value for C/Y automatically changes to the same value. To store a unique value to C/Y, you must store the value to C/Y after you have stored a value to P/Y.

The EasyData™ Application

The Vernier EasyData™ application by Vernier Software & Technology allows you to view and analyze real-world data when the TI-84 Plus is connected to data collection devices such as Texas Instruments CBR 2™, CBL 2™, Vernier LabPro®, Vernier USB sensors, Vernier Go!™ Motion, or Vernier Motion Detector Unit. The TI-84 Plus comes with the EasyData™ App already installed.

Note: The application will only work with Vernier auto-ID sensors when using CBL 2™ and Vernier LabPro®.

The EasyData™ App will autolaunch on your TI-84 Plus if you plug in a USB sensor such as the CBR 2™ or Vernier USB Temperature sensor.

Steps for Running the EasyData™ App

Follow these basic steps when using the EasyData™ App.
Starting the EasyData™ App

1. Attach your data collection device to your TI-84 Plus. Make sure the cables are firmly connected.
2. If the EasyData™ App has not auto-launched, press [APPS] and the [A] or [B] to select the EasyData™ App.
3. Press [ENTER]. The EasyData™ information screen is displayed for about three seconds followed by the main screen.

Quitting the EasyData™ App

1. To quit the EasyData™ App, select Quit (press [GRAPH]).
 The Ready to quit? screen is displayed, which indicates that the collected data has been transferred to lists L1 through L4 on the TI-84 Plus.
2. Press OK (press [GRAPH]) to quit.

EasyData™ Settings

Changing EasyData™ settings

The EasyData™ App displays the most commonly used settings before data collection begins.

To change a predefined setting:

1. From the main screen in the EasyData™ App, choose Setup and select 2: Time Graph. The current settings are displayed on the calculator.
 Note: If using a motion detector, settings for 3: Distance Match and 4: Ball Bounce in the Setup menu are preset and cannot be changed.
2. Select Next (press [ZOOM]) to move to the setting you want to change. Press [CLEAR] to clear a setting.
3. Repeat to cycle through the available options. When the option is correct, select Next to move to the next option.
4. To change a setting, enter 1 or 2 digits, and then select Next (press [ZOOM]).
5. When all the settings are correct, select OK (press [GRAPH]) to return to the main menu.
6. Select Start (press [ZOOM]) to begin collecting data.

Restoring the EasyData™ App to the default settings

The default settings are appropriate for a wide variety of sampling situations. If you are unsure of the best settings, begin with the default settings, and then adjust the settings for your specific activity.

To restore the default settings in the EasyData™ App while a data collection device is connected to the TI-84 Plus, choose File and select 1:New.
Starting and Stopping Data Collection

Starting Data Collection

To start sampling, select Start (press ZOOM). Sampling will automatically stop when the number of samples set in the Time Graph Settings menu is reached. The TI-84 Plus will then display a graph of the sampled data.

Stopping Data Collection

To stop sampling before it automatically stops, select Stop (press and hold ZOOM) at any time during the sampling process. When sampling stops, a graph of the sampled data is displayed.

Saving Collected Data

Collected data is automatically transferred to the TI-84 Plus and stored in lists L1 through L4 when data collection is complete. When you exit the EasyData™ App, a prompt reminds you of the lists in which time, distance, velocity, and acceleration are stored.

This manual describes basic operation for the EasyData 2 application. For more information about the EasyData 2 App, visit www.vernier.com.
Chapter 15: CATALOG, Strings, Hyperbolic Functions

Browsing the TI-84 Plus CATALOG

What Is the CATALOG?

The CATALOG is an alphabetical list of all functions and instructions on the TI-84 Plus. You also can access each CATALOG item from a menu or the keyboard, except:

- The six string functions
- The six hyperbolic functions
- The solve(instruction without the equation solver editor (Chapter 2)
- The inferential stat functions without the inferential stat editors (Chapter 13)

Note: The only CATALOG programming commands you can execute from the home screen are GetCalc(), Get(), and Send().

Selecting an Item from the CATALOG

To select a CATALOG item, follow these steps.

1. Press \text{2nd}\left[\text{CATALOG}\right] to display the CATALOG.

 The \text{cursor} in the first column is the selection cursor.

2. Press \text{•} or \text{•} to scroll the CATALOG until the selection cursor points to the item you want.
 - To jump to the first item beginning with a particular letter, press that letter; alpha-lock is on.
 - Items that begin with a number are in alphabetical order according to the first letter after the number. For example, \text{2-PropZTest} is among the items that begin with the letter \text{P}.
 - Functions that appear as symbols, such as $+$, $^{-1}$, $<$, and $\sqrt{}$, follow the last item that begins with \text{Z}. To jump to the first symbol, \dagger, press [9].

3. Press \text{ENTER} to paste the item to the current screen.

Note:

- From the top of the CATALOG menu, press □ to move to the bottom. From the bottom, press □ to move to the top.
- When your TI-84 Plus is in MathPrint™ mode, many functions will paste the MathPrint™ template on the home screen. For example, abs(pastes the absolute value template on the home screen instead of abs(.

<table>
<thead>
<tr>
<th>MathPrint™</th>
<th>Classic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entering and Using Strings

What Is a String?

A string is a sequence of characters that you enclose within quotation marks. On the TI-84 Plus, a string has two primary applications.

- It defines text to be displayed in a program.
- It accepts input from the keyboard in a program.

Characters are the units that you combine to form a string.

- Each number, letter, and space counts as one character.
- Each instruction or function name, such as sin(or cos(, counts as one character; the TI-84 Plus interprets each instruction or function name as one character.

Entering a String

To enter a string on a blank line on the home screen or in a program, follow these steps.

1. Press [ALPHA] "[' to indicate the beginning of the string.
2. Enter the characters that comprise the string.
 - Use any combination of numbers, letters, function names, or instruction names to create the string.
 - To enter a blank space, press [ALPHA] [].
 - To enter several alpha characters in a row, press 2nd [A-LOCK] to activate alpha-lock.
3. Press [ALPHA] "[' to indicate the end of the string.
 "string"
4. Press ENTER. On the home screen, the string is displayed on the next line without quotations. An ellipsis (...) indicates that the string continues beyond the screen. To scroll to see the entire string, press □ and □.
Note: A string must be enclosed in quotation marks. The quotation marks do not count as string characters.

Storing Strings to String Variables

String Variables

The TI-84 Plus has 10 variables to which you can store strings. You can use string variables with string functions and instructions.

To display the VARS STRING menu, follow these steps.

1. Press `VARS` to display the VARS menu. Move the cursor to 7: String.

2. Press `ENTER` to display the STRING secondary menu.

Storing a String to a String Variable

To store a string to a string variable, follow these steps.

1. Press `ALPHA` `"`, enter the string, and press `ALPHA` `"`.
2. Press `STO`.
3. Press `VARS` 7 to display the VARS STRING menu.
4. Select the string variable (from Str1 to Str9, or Str0) to which you want to store the string.
The string variable is pasted to the current cursor location, next to the store symbol (⇒).

5. Press \[\text{[ENTER]} \] to store the string to the string variable. On the home screen, the stored string is displayed on the next line without quotation marks.

\[
\text{"HELLO"⇒Str2}
\]

Displaying the Contents of a String Variable

To display the contents of a string variable on the home screen, select the string variable from the \[\text{VARS STRING} \] menu, and then press \[\text{[ENTER]} \]. The string is displayed.

\[
\text{Str2}
\]

String Functions and Instructions in the CATALOG

Displaying String Functions and Instructions in the CATALOG

String functions and instructions are available only from the CATALOG. The table below lists the string functions and instructions in the order in which they appear among the other \[\text{CATALOG} \] menu items. The ellipses in the table indicate the presence of additional CATALOG items.

<table>
<thead>
<tr>
<th>CATALOG</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Equ→String()</td>
<td>Converts an equation to a string.</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>expr()</td>
<td>Converts a string to an expression.</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>inString()</td>
<td>Returns a character’s place number.</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>length()</td>
<td>Returns a string’s character length.</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>String→Equ()</td>
<td>Converts a string to an equation.</td>
</tr>
<tr>
<td>sub()</td>
<td>Returns a string subset as a string.</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Concatenation

To concatenate two or more strings, follow these steps.

1. Enter string1, which can be a string or string name.
2. Press \(+ \).
3. Enter string2, which can be a string or string name. If necessary, press \(+ \) and enter string3, and so on.
 \[
 \text{string1} + \text{string2} + \text{string3} \ldots
 \]
4. Press \(\text{ENTER} \) to display the strings as a single string.

```
"HIJK "->Str1
HIJK
Ans="LMNOP"
HIJK LMNOP
```

Selecting a String Function from the CATALOG

To select a string function or instruction and paste it to the current screen, follow the steps for selecting an item from the CATALOG.

Equ\(\text{String}(\)

Equ\(\text{String}(\) converts an equation to a string. The equation must be store in a VARS Y-VARS variable. \(Y_n\) contains the equation. \(Str_n\) (from \(Str1\) to \(Str9\), or \(Str0\)) is the string variable to which you want the equation to be stored.

Equ\(\text{String}(Y_n,Str_n)\)

```
"3X"->Y_1
Equ\(\text{String}(Y_1,Str_1)
Str_1
```

expr(\)

expr(converts the character string contained in string to an expression and executes it. string can be a string or a string variable.
expr\((\text{string})\)

\[
\begin{array}{c|c}
2X & 2 \\
"5X" \rightarrow \text{Str1} & \text{expr}(\"1+2X^2\") \\
5X & \text{expr}(\text{Str1}) \rightarrow A \\
A & 10 \\
\end{array}
\]

inString\((\text{string})\)

inString\((\text{string})\) returns the character position in \text{string} of the first character of \text{substring}. \text{string} can be a string or a string variable. \text{start} is an optional character position at which to start the search; the default is 1.

\[
\begin{array}{c|c|c}
\text{inString}(\"PQRSTU\", \"STU\") & 4 \\
\text{inString}(\"ABCABC\", \"ABC\", 4) & 4 \\
\end{array}
\]

Note: If \text{string} does not contain \text{substring}, or \text{start} is greater than the length of \text{string}, inString\((\text{string})\) returns 0.

length\((\text{string})\)

length\((\text{string})\) returns the number of characters in \text{string}. \text{string} can be a string or string variable.

Note: An instruction or function name, such as \text{sin(} or \text{cos(}, counts as one character.

\[
\begin{array}{c|c}
\text{length}(\text{Str1}) & 4 \\
\end{array}
\]

String\(\text{Equ(}\text{string,} Yn\text{)}\)

String\(\text{Equ(}\text{string,} Yn\text{)}\) converts \text{string} into an equation and stores the equation to \text{Yn}. \text{string} can be a string or string variable. String\(\text{Equ(}\text{string,} Yn\text{)}\) is the inverse of \text{EquString(}.
sub

sub returns a string that is a subset of an existing string. string can be a string or a string variable. begin is the position number of the first character of the subset. length is the number of characters in the subset.

sub(string,begin,length)

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
sub("ABCDEFGHIJKLMNOPQRSTUVWXYZ",5,2)
DE

Entering a Function to Graph during Program Execution

In a program, you can enter a function to graph during program execution using these commands.

Note: When you execute this program, enter a function to store to Y3 at the ENTRY= prompt.
Hyperbolic Functions in the CATALOG

Hyperbolic Functions

The hyperbolic functions are available only from the CATALOG. The table below lists the hyperbolic functions in the order in which they appear among the other CATALOG menu items. The ellipses in the table indicate the presence of additional CATALOG items.

<table>
<thead>
<tr>
<th>Hyperbolic Functions</th>
<th>CATALOG</th>
</tr>
</thead>
<tbody>
<tr>
<td>sinh(, cosh(, tanh()</td>
<td>sinh(, cosh(, and tanh() are the hyperbolic functions. Each is valid for real numbers, expressions, and lists.</td>
</tr>
<tr>
<td>sinh(-1)</td>
<td>Hyperbolic arcsine</td>
</tr>
<tr>
<td>cosh(-1)</td>
<td>Hyperbolic arccosine</td>
</tr>
<tr>
<td>sinh-1(</td>
<td>Hyperbolic sine</td>
</tr>
<tr>
<td>cosh-1(</td>
<td>Hyperbolic arccosine</td>
</tr>
<tr>
<td>tanh(</td>
<td>Hyperbolic tangent</td>
</tr>
<tr>
<td>tanh-1(</td>
<td>Hyperbolic arctangent</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{sinh}(5) & = 5.210953055 \\
\text{cosh}(0.25, .5, 1)) & = \{1.0314131, 1.12\}
\end{align*}
\]

\[
\begin{align*}
\text{sinh}^{-1}(, \text{cosh}^{-1}(, \text{tanh}^{-1}(& \text{ is the hyperbolic arcsine function. } \text{cosh}^{-1}(\text{ is the hyperbolic arccosine function. } \text{tanh}^{-1}(\text{ is the hyperbolic arctangent function. Each is valid for real numbers, expressions, and lists.} \\
\end{align*}
\]
\(\sinh^{-1}(value) \)
\(\cosh^{-1}(value) \)
\(\tanh^{-1}(value) \)

\[
\begin{array}{l|l}
\sinh^{-1}(\{0, 1\}) & \{0, 0.881373587\} \\
\tanh^{-1}(\{-0.5\}) & -0.5493061443
\end{array}
\]
Chapter 16: Programming

Getting Started: Volume of a Cylinder

Getting Started is a fast-paced introduction. Read the chapter for details.

A program is a set of commands that the TI-84 Plus executes sequentially, as if you had entered them from the keyboard. Create a program that prompts for the radius \(R \) and the height \(H \) of a cylinder and then computes its volume.

1. Press \(\text{PRGM} \rightarrow \) to display the PRGM NEW menu.

2. Press \(\text{ENTER} \) to select 1:Create New. The Name= prompt is displayed, and alpha-lock is on. Press CYLINDER, and then press \(\text{ENTER} \) to name the program CYLINDER.

You are now in the program editor. The colon (:) in the first column of the second line indicates the beginning of a command line.

3. Press \(\text{PRGM} \rightarrow 2 \) to select 2:Prompt from the PRGM I/O menu. Prompt is copied to the command line. Press \(\text{ALPHA} \ R \rightarrow \text{ALPHA} \ H \) to enter the variable names for radius and height. Press \(\text{ENTER} \).

4. Press \(\text{2nd} [\pi] \text{ALPHA} \ R \rightarrow \text{ALPHA} \ H \rightarrow \text{STO} \rightarrow \text{ALPHA} \ V \) \(\text{ENTER} \) to enter the expression \(\pi R^2H \) and store it to the variable \(V \).

5. Press \(\text{PRGM} \rightarrow 3 \) to select 3:Disp from the PRGM I/O menu. Disp is pasted to the command line. Press \(\text{2nd} [\text{[}] \text{ALPHA} \ R \rightarrow \text{ALPHA} \ H \rightarrow \text{VOLUME} \rightarrow \text{[]} \text{IS} \rightarrow \text{[]} \) \(\text{ALPHA} \rightarrow \text{ALPHA} \ V \) \(\text{ENTER} \) to set up the program to display the text VOLUME IS on one line and the calculated value of \(V \) on the next.

6. Press \(\text{2nd} [\text{QUIT}] \) to display the home screen.
Creating and Deleting Programs

What Is a Program?

A program is a set of one or more command lines. Each line contains one or more instructions. When you execute a program, the TI-84 Plus performs each instruction on each command line in the same order in which you entered them. The number and size of programs that the TI-84 Plus can store is limited only by available memory.

Operating Systems versions and programming

- Programs created with OS 2.43 and earlier should run correctly but may give unexpected results when you run them using OS 2.53MP and higher. You should test programs created with earlier OS versions to make sure you get the desired results.
- Programs can run in Classic or MathPrint™ mode.
- Shortcut menus are available wherever the MATH menu can be accessed.
- MathPrint™ templates are not available for programs. All input and output is in Classic format.
- You can use fractions in programs, but you should test the program to make sure that you get the desired results.
- The spacing of the display may be slightly different in MathPrint™ mode than in Classic mode. If you prefer the spacing in Classic mode, set the mode using a command in your program. Screen shots for the examples in this chapter were taken in Classic mode.
- Stat Wizards are available only for syntax help for functions in the DISTR DISTR menu and the seq(function (sequence) in the LIST OPS menu. Run the Catalog Help application for more syntax help when programming.
Creating a New Program

To create a new program, follow these steps.

1. Press \texttt{PRGM} \(\mathbf{4} \) to display the \texttt{PRGM NEW} menu.

2. Press \texttt{ENTER} to select 1:\texttt{Create New}. The \texttt{Name=} prompt is displayed, and alpha-lock is on.

3. Press a letter from A to Z or \(\theta \) to enter the first character of the new program name.

 \textbf{Note:} A program name can be one to eight characters long. The first character must be a letter from A to Z or \(\theta \). The second through eighth characters can be letters, numbers, or \(\theta \).

4. Enter zero to seven letters, numbers, or \(\theta \) to complete the new program name.

5. Press \texttt{ENTER}. The program editor is displayed.

6. Enter one or more program commands.

7. Press \texttt{2nd [QUIT]} to leave the program editor and return to the home screen.

Managing Memory and Deleting a Program

To check whether adequate memory is available for a program you want to enter:

1. Press \texttt{2nd [MEM]} to display the \texttt{MEMORY} menu.

2. Select 2:\texttt{Mem Mgmt/Del} to display the \texttt{MEMORY MANAGEMENT/DELETE} menu (Chapter 18).

3. Select 7:\texttt{Prgm} to display the \texttt{PRGM} editor.

The TI-84 Plus expresses memory quantities in bytes.

You can increase available memory in one of two ways. You can delete one or more programs or you can archive some programs.

To increase available memory by deleting a specific program:

1. Press \texttt{2nd [MEM]} and then select 2:\texttt{Mem Mgmt/Del} from the \texttt{MEMORY} menu.

2. Select 7:\texttt{Prgm} to display the \texttt{PRGM} editor (Chapter 18).
3. Press \(\text{X} \) and \(\text{X} \) to move the selection cursor \(\uparrow\) next to the program you want to delete, and then press \(\text{DEL} \). The program is deleted from memory.

Note: You will receive a message asking you to confirm this delete action. Select \(\text{2:yes} \) to continue.

To leave the \textit{PRGM} editor screen without deleting anything, press \(\text{[2nd]} \text{[QUIT]} \), which displays the home screen.

To increase available memory by archiving a program:

1. Press \(\text{[2nd]} \text{[MEM]} \) and then select \(\text{2:Mem Mgmt/Del} \) from the \textit{MEMORY} menu.
2. Select \(\text{2:Mem Mgmt/Del} \) to display the \textit{MEM MGMT/DEL} menu.
3. Select \(\text{7:Prgm...} \) to display the \textit{PRGM} menu.

4. Press \(\text{[ENTER]} \) to archive the program. An asterisk will appear to the left of the program to indicate it is an archived program.

To unarchive a program in this screen, put the cursor next to the archived program and press \(\text{[ENTER]} \). The asterisk will disappear.

Note: Archive programs cannot be edited or executed. In order to edit or execute an archived program, you must first unarchive it.

Entering Command Lines and Executing Programs

Entering a Program Command Line

You can enter on a command line any instruction or expression that you could execute from the home screen. In the program editor, each new command line begins with a colon. To enter more than one instruction or expression on a single command line, separate each with a colon.

Note: A command line can be longer than the screen is wide.

While in the program editor, you can display and select from menus. You can return to the program editor from a menu in either of two ways.

- Select a menu item, which pastes the item to the current command line.
 - or -
- Press \(\text{CLEAR} \).

When you complete a command line, press \(\text{[ENTER]} \). The cursor moves to the next command line.
Programs can access variables, lists, matrices, and strings saved in memory. If a program stores a new value to a variable, list, matrix, or string, the program changes the value in memory during execution.

You can call another program as a subroutine.

Executing a Program

To execute a program, begin on a blank line on the home screen and follow these steps.

1. Press \(ext{PRGM} \) to display the PRGM EXEC menu.
2. Select a program name from the PRGM EXEC menu. prgm\textit{name} is pasted to the home screen (for example, prgmCYLINDER).
3. Press \(ext{ENTER} \) to execute the program. While the program is executing, the busy indicator is on.

Last Answer (Ans) is updated during program execution. Last Entry is not updated as each command is executed (Chapter 1).

The TI-84 Plus checks for errors during program execution. It does not check for errors as you enter a program.

Breaking a Program

To stop program execution, press \(ext{ON} \). The ERR:BREAK menu is displayed.

- To return to the home screen, select 1:Quit.
- To go where the interruption occurred, select 2:Goto.

Editing Programs

Editing a Program

To edit a stored program, follow these steps.

1. Press \(ext{PRGM} \) to display the PRGM EDIT menu.
2. Select a program name from the PRGM EDIT menu. Up to the first seven lines of the program are displayed.

 \textbf{Note}: The program editor does not display a \(\downarrow \) to indicate that a program continues beyond the screen.
3. Edit the program command lines.
 - Move the cursor to the appropriate location, and then delete, overwrite, or insert.
 - Press \(ext{CLEAR} \) to clear all program commands on the command line (the leading colon remains), and then enter a new program command.
Note: To move the cursor to the beginning of a command line, press [2nd] [A]; to move to the end, press [2nd] [H]. To scroll the cursor down seven command lines, press [ALPHA] [†]. To scroll the cursor up seven command lines, press [ALPHA] [‡].

Inserting and Deleting Command Lines

To insert a new command line anywhere in the program, place the cursor where you want the new line, press [2nd] [INS], and then press [ENTER]. A colon indicates a new line.

To delete a command line, place the cursor on the line, press [CLEAR] to clear all instructions and expressions on the line, and then press [DEL] to delete the command line, including the colon.

Copying and Renaming Programs

Copying and Renaming a Program

To copy all command lines from one program into a new program, follow steps 1 through 5 for Creating a New Program, and then follow these steps.

1. Press [2nd] [RCL]. Rcl is displayed on the bottom line of the program editor in the new program (Chapter 1).
2. Press [PRGM] [‡] to display the PRGM EXEC menu.
3. Select a name from the menu. prgname is pasted to the bottom line of the program editor.
4. Press [ENTER]. All command lines from the selected program are copied into the new program.

Copying programs has at least two convenient applications.

• You can create a template for groups of instructions that you use frequently.
• You can rename a program by copying its contents into a new program.

Note: You also can copy all the command lines from one existing program to another existing program using RCL.

Scrolling the PRGM EXEC and PRGM EDIT Menus

The TI-84 Plus sorts PRGM EXEC and PRGM EDIT menu items automatically into alphanumerical order. Each menu only labels the first 10 items using 1 through 9, then 0.

To jump to the first program name that begins with a particular alpha character or θ, press [ALPHA] [letter from A to Z or θ].

Note: From the top of either the PRGM EXEC or PRGM EDIT menu, press [A] to move to the bottom. From the bottom, press [A] to move to the top. To scroll the cursor down the menu seven items, press [ALPHA] [‡]. To scroll the cursor up the menu seven items, press [ALPHA] [†].
PRGM CTL (Control) Instructions

PRGM CTL Menu

To display the PRGM CTL (program control) menu, press PRGM from the program editor only.

<table>
<thead>
<tr>
<th>CTL</th>
<th>I/O EXEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>If</td>
</tr>
<tr>
<td>2:</td>
<td>Then</td>
</tr>
<tr>
<td>3:</td>
<td>Else</td>
</tr>
<tr>
<td>4:</td>
<td>For(</td>
</tr>
<tr>
<td>5:</td>
<td>While</td>
</tr>
<tr>
<td>6:</td>
<td>Repeat</td>
</tr>
<tr>
<td>7:</td>
<td>End</td>
</tr>
<tr>
<td>8:</td>
<td>Pause</td>
</tr>
<tr>
<td>9:</td>
<td>Lbl</td>
</tr>
<tr>
<td>0:</td>
<td>Goto</td>
</tr>
<tr>
<td>A:</td>
<td>IS>(</td>
</tr>
<tr>
<td>B:</td>
<td>DS<</td>
</tr>
<tr>
<td>C:</td>
<td>Menu(</td>
</tr>
<tr>
<td>D:</td>
<td>prgm</td>
</tr>
<tr>
<td>E:</td>
<td>Return</td>
</tr>
<tr>
<td>F:</td>
<td>Stop</td>
</tr>
<tr>
<td>G:</td>
<td>DelVar</td>
</tr>
<tr>
<td>H:</td>
<td>GraphStyle(</td>
</tr>
<tr>
<td>I:</td>
<td>OpenLib(</td>
</tr>
<tr>
<td>J:</td>
<td>ExecLib(</td>
</tr>
</tbody>
</table>

These menu items direct the flow of an executing program. They make it easy to repeat or skip a group of commands during program execution. When you select an item from the menu, the name is pasted to the cursor location on a command line in the program.

To return to the program editor without selecting an item, press CLEAR.

Controlling Program Flow

Program control instructions tell the TI-84 Plus which command to execute next in a program. If, While, and Repeat check a defined condition to determine which command to execute next. Conditions frequently use relational or Boolean tests (Chapter 2), as in:
If \(A < 7 \): \(A + 1 \rightarrow A \)
or
If \(N = 1 \) and \(M = 1 \): Goto Z

If

Use If for testing and branching. If \(\text{condition} \) is false (zero), then the \(\text{command} \) immediately following If is skipped. If \(\text{condition} \) is true (nonzero), then the next \(\text{command} \) is executed. If instructions can be nested.

\[
\text{:If } \text{condition} \\
\text{:command (if true)} \\
\text{:command}
\]

Program

<table>
<thead>
<tr>
<th>PROGRAM: COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>#8+R</td>
</tr>
<tr>
<td>#Lb1 Z</td>
</tr>
<tr>
<td>#A+1+R</td>
</tr>
<tr>
<td>#Disp "A IS", A</td>
</tr>
<tr>
<td>#If A#2</td>
</tr>
<tr>
<td>#Stop</td>
</tr>
<tr>
<td>#Goto Z</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>PRGmCOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A IS</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>A IS</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>Done</td>
</tr>
</tbody>
</table>

If-Then

Then following an If executes a group of \(\text{commands} \) if \(\text{condition} \) is true (nonzero). End identifies the end of the group of \(\text{commands} \).

\[
\text{:If } \text{condition} \\
\text{:Then} \\
\text{:command (if true)} \\
\text{:command (if true)} \\
\text{:End} \\
\text{:command}
\]

Program

<table>
<thead>
<tr>
<th>PROGRAM: TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>#X*10+Y</td>
</tr>
<tr>
<td>#If X<10</td>
</tr>
<tr>
<td>#Then</td>
</tr>
<tr>
<td>#X+3*X</td>
</tr>
<tr>
<td>#Y+3*Y</td>
</tr>
<tr>
<td>#End</td>
</tr>
<tr>
<td>#Disp X,Y</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>PRGmTEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>1?</td>
</tr>
<tr>
<td>Done</td>
</tr>
</tbody>
</table>

If-Then-Else

Else following If-Then executes a group of \(\text{commands} \) if \(\text{condition} \) is false (zero). End identifies the end of the group of \(\text{commands} \).

\[
\text{:If } \text{condition} \\
\text{:Then}
\]
Chapter 16: Programming

Program: TESSELSE

```
Program: TESSELSE
:Input "X=", X
:If X<0
:Then
:X=Y
:Else
:X=Y
:End
:Disp {X,Y}
```

Output:

```
Program: TESSELSE

<table>
<thead>
<tr>
<th>X=5</th>
<th>Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>X=-5</td>
<td></td>
</tr>
</tbody>
</table>
```

Note: In OS 2.53MP and higher, the program name displays again when you press `ENTER` to repeat the program.

For(

For(loops and increments. It increments variable from begin to end by increment. Increment is optional (default is 1) and can be negative (`end<begin`). End is a maximum or minimum value not to be exceeded. End identifies the end of the loop. For(loops can be nested.

```
:For (variable, begin, end[, increment])
:command (while end not exceeded)
:command (while end not exceeded)
:End
:command
```

Program

```
PROGRAM SQUARE
:For (A, 0, 8, 2)
:Disp A^2
:End
```

Output

```
Program SQUARE

<table>
<thead>
<tr>
<th>0</th>
<th>3</th>
</tr>
</thead>
</table>
| 36 | 64 | Done
```

While

While performs a group of commands while condition is true. Condition is frequently a relational test (Chapter 2). Condition is tested when While is encountered. If condition is true (nonzero), the program executes a group of commands. End signifies the end of the group. When condition is false (zero), the program executes each command following End. While instructions can be nested.

```
:While condition
:command (while condition is true)
```
• Repeat repeats a group of commands until condition is true (nonzero). It is similar to While, but condition is tested when End is encountered; therefore, the group of commands is always executed at least once. Repeat instructions can be nested.

End

End identifies the end of a group of commands. You must include an End instruction at the end of each For, While, or Repeat loop. Also, you must paste an End instruction at the end of each If-Then group and each If-Then-Else group.

Pause

Pause suspends execution of the program so that you can see answers or graphs. During the pause, the pause indicator is on in the top-right corner. Press [ENTER] to resume execution.

• Pause without a value temporarily pauses the program. If the DispGraph or Disp instruction has been executed, the appropriate screen is displayed.

• Pause with value displays value on the current home screen. value can be scrolled.
Lbl, Goto

Lbl (label) and Goto (go to) are used together for branching.

Lbl specifies the label for a command. Label can be one or two characters (A through Z, 0 through 99, or ø).

Lbl label

Goto causes the program to branch to label when Goto is encountered.

Goto label

Pause [value]

Program	Output
```plaintext
PROGRAM: PAUSE
: 10×X
: "x^2+2×y_1"
: Disp "x=" , X
: Pause
: Disp Graph
: Pause
```
```
prSGmPAUSE
x=
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
IS>(

IS>((increment and skip) adds 1 to variable. If the answer is \(> \) value (which can be an expression), the next command is skipped; if the answer is \(\leq \) value, the next command is executed. variable cannot be a system variable.

```plaintext
:IS>(variable,value)
```

:command (if answer \(\leq \) value)

:command (if answer \(> \) value)

<table>
<thead>
<tr>
<th>Program</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM:ISKIP</td>
<td>Program SKIP</td>
</tr>
<tr>
<td>:IS>(A,6)</td>
<td>IS(A,6)</td>
</tr>
<tr>
<td>:Disp "NOT > 6"</td>
<td>Disp "NOT > 6"</td>
</tr>
<tr>
<td>:Disp "> 6"</td>
<td>Disp "> 6"</td>
</tr>
<tr>
<td>Done</td>
<td>Done</td>
</tr>
</tbody>
</table>

Note: IS> is not a looping instruction.

DS<(

DS<((decrement and skip) subtracts 1 from variable. If the answer is \(< \) value (which can be an expression), the next command is skipped; if the answer is \(\geq \) value, the next command is executed. variable cannot be a system variable.

```plaintext
:DS<(variable,value)
```

:command (if answer \(\geq \) value)

:command (if answer \(< \) value)

<table>
<thead>
<tr>
<th>Program</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM:DSKIP</td>
<td>Program SKIP</td>
</tr>
<tr>
<td>:1>R</td>
<td>1>R</td>
</tr>
<tr>
<td>:DS<(A,6)</td>
<td>DS<(A,6)</td>
</tr>
<tr>
<td>:Disp "> 6"</td>
<td>Disp "> 6"</td>
</tr>
<tr>
<td>:Disp "NOT > 6"</td>
<td>Disp "NOT > 6"</td>
</tr>
<tr>
<td>Done</td>
<td>Done</td>
</tr>
</tbody>
</table>

Note: DS< is not a looping instruction.

Menu(

Menu(sets up branching within a program. If **Menu(** is encountered during program execution, the menu screen is displayed with the specified menu items, the pause indicator is on, and execution pauses until you select a menu item.

The menu title is enclosed in quotation marks (" "). Up to seven pairs of menu items follow. Each pair comprises a text item (also enclosed in quotation marks) to be displayed as a menu selection, and a label item to which to branch if you select the corresponding menu selection.

```plaintext
Menu("title","text1","label1","text2","label2",...) 
```

<table>
<thead>
<tr>
<th>Program</th>
<th>Output</th>
</tr>
</thead>
</table>

Chapter 16: Programming 286
The program above pauses until you select 1 or 2. If you select 2, for example, the menu disappears and the program continues execution at Lbl B.

prgm

Use `prgm` to execute other programs as subroutines. When you select `prgm`, it is pasted to the cursor location. Enter characters to spell a program name. Using `prgm` is equivalent to selecting existing programs from the PRGM EXEC menu; however, it allows you to enter the name of a program that you have not yet created.

`prgm` `name`

Note: You cannot directly enter the subroutine name when using `RCL`. You must paste the name from the PRGM EXEC menu.

Return

`Return` quits the subroutine and returns execution to the calling program, even if encountered within nested loops. Any loops are ended. An implied `Return` exists at the end of any program that is called as a subroutine. Within the main program, `Return` stops execution and returns to the home screen.

Stop

`Stop` stops execution of a program and returns to the home screen. `Stop` is optional at the end of a program.

DelVar

`DelVar` deletes from memory the contents of `variable`.

`DelVar` `variable`
GraphStyle(

`GraphStyle()` designates the style of the graph to be drawn. `function#` is the number of the Y= function name in the current graphing mode. `graphstyle` is a number from 1 to 7 that corresponds to the graph style, as shown below.

1 = \ (line)
2 = \ (thick)
3 = \ (shade above)
4 = \ (shade below)
5 = \ (path)
6 = \ (animate)
7 = ` (dot)

For example, `GraphStyle(1,5)` in `Func` mode sets the graph style for Y1 to \ (path; 5).

Not all graph styles are available in all graphing modes. For a detailed description of each graph style, see the Graph Styles table in Chapter 3.

PRGM I/O (Input/Output) Instructions

PRGM I/O Menu

To display the PRGM I/O (program input/output) menu, press `[PRGM]` from within the program editor only.

<table>
<thead>
<tr>
<th>CTL</th>
<th>I/O</th>
<th>EXEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>Input</td>
<td>Enters a value or uses the cursor.</td>
</tr>
<tr>
<td>2:</td>
<td>Prompt</td>
<td>Prompts for entry of variable values.</td>
</tr>
<tr>
<td>3:</td>
<td>Disp</td>
<td>Displays text, value, or the home screen.</td>
</tr>
<tr>
<td>4:</td>
<td>DispGraph</td>
<td>Displays the current graph.</td>
</tr>
<tr>
<td>5:</td>
<td>DispTable</td>
<td>Displays the current table.</td>
</tr>
<tr>
<td>6:</td>
<td>Output(</td>
<td>Displays text at a specified position.</td>
</tr>
<tr>
<td>7:</td>
<td>getKey</td>
<td>Checks the keyboard for a keystroke.</td>
</tr>
<tr>
<td>8:</td>
<td>ClrHome</td>
<td>Clears the display.</td>
</tr>
<tr>
<td>9:</td>
<td>ClrTable</td>
<td>Clears the current table.</td>
</tr>
<tr>
<td>0:</td>
<td>GetCalc(</td>
<td>Gets a variable from another TI-84 Plus.</td>
</tr>
<tr>
<td>A:</td>
<td>Get</td>
<td>Gets a variable from CBL 2™ or CBR™.</td>
</tr>
<tr>
<td>B:</td>
<td>Send(</td>
<td>Sends a variable to CBL 2 or CBR.</td>
</tr>
</tbody>
</table>

These instructions control input to and output from a program during execution. They allow you to enter values and display answers during program execution.

To return to the program editor without selecting an item, press [CLEAR].
Displaying a Graph with Input

Input without a variable displays the current graph. You can move the free-moving cursor, which updates X and Y (and R and θ for PolarGC format). The pause indicator is on. Press ENTER to resume program execution.

Input

Program	Output
PROGRAM: INPUT
:EnOff
:2Decimal
:Input
:Disp X,Y

Storing a Variable Value with Input

Input with variable displays a ? (question mark) prompt during execution. variable may be a real number, complex number, list, matrix, string, or Y= function. During program execution, enter a value, which can be an expression, and then press ENTER. The value is evaluated and stored to variable, and the program resumes execution.

Input [variable]

You can display text or the contents of Strn (a string variable) of up to 16 characters as a prompt. During program execution, enter a value after the prompt and then press ENTER. The value is stored to variable, and the program resumes execution.

Input ["text", variable]
Input [Strn, variable]
Note: When a program prompts for input of lists and \(Y_n \) functions during execution, you must include the braces (\{ \}) around the list elements and quotation marks (") around the expressions.

Prompt

During program execution, **Prompt** displays each variable, one at a time, followed by =?. At each prompt, enter a value or expression for each variable, and then press [ENTER]. The values are stored, and the program resumes execution.

Prompt variableA,variableB,...,variable\textit{n}\\

<table>
<thead>
<tr>
<th>Program</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM:WINDOW</td>
<td>Prım WINDOW</td>
</tr>
<tr>
<td>Prompt, Xmin</td>
<td>Xmin = 2-10</td>
</tr>
<tr>
<td>Prompt, Xmax</td>
<td>Xmax = 2-3</td>
</tr>
<tr>
<td>Prompt, Ymin</td>
<td>Ymin = 2-3</td>
</tr>
<tr>
<td>Prompt, Ymax</td>
<td></td>
</tr>
</tbody>
</table>

Note: \(Y_n \) functions are not valid with **Prompt**.

Displaying the Home Screen

Disp (display) without a value displays the home screen. To view the home screen during program execution, follow the **Disp** instruction with a **Pause** instruction.

Disp

Displaying Values and Messages

Disp with one or more values displays the value of each.

Disp [value\textit{A},value\textit{B},value\textit{C},...,value\textit{n}]

- If \(\text{value} \) is a variable, the current value is displayed.
- If \(\text{value} \) is an expression, it is evaluated and the result is displayed on the right side of the next line.
- If \(\text{value} \) is text within quotation marks, it is displayed on the left side of the current display line. \(\rightarrow \) is not valid as text.

<table>
<thead>
<tr>
<th>Program</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM: "THE ANSWER IS (\pi/2)"</td>
<td>\text{\mbox{\small \textbf{THE ANSWER IS}}} \hspace{0.5cm} 1.570796327</td>
</tr>
<tr>
<td></td>
<td>Done</td>
</tr>
</tbody>
</table>

If **Pause** is encountered after **Disp**, the program halts temporarily so you can examine the screen. To resume execution, press [ENTER].
Note: If a matrix or list is too large to display in its entirety, ellipses (...) are displayed in the last column, but the matrix or list cannot be scrolled. To scroll, use **Pause** value.

DispGraph

DispGraph (display graph) displays the current graph. If **Pause** is encountered after **DispGraph**, the program halts temporarily so you can examine the screen. Press **ENTER** to resume execution.

DispTable

DispTable (display table) displays the current table. The program halts temporarily so you can examine the screen. Press **ENTER** to resume execution.

Output

Output displays **text** or **value** on the current home screen beginning at **row** (1 through 8) and **column** (1 through 16), overwriting any existing characters.

Note: You may want to precede **Output** with **ClrHome**.

Expressions are evaluated and values are displayed according to the current mode settings. Matrices are displayed in entry format and wrap to the next line. ➔ is not valid as text.

Output(row,column,"text")

Output(row,column,value)

<table>
<thead>
<tr>
<th>Program</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>PROGRAM: OUTPUT</code></td>
<td></td>
</tr>
<tr>
<td><code>: 3 + 5 → B</code></td>
<td>ANSWER: 8</td>
</tr>
<tr>
<td><code>: ClrHome</code></td>
<td></td>
</tr>
<tr>
<td><code>: Output(5, 4, "ANSWER:")</code></td>
<td></td>
</tr>
<tr>
<td><code>: Output(5, 12, B)</code></td>
<td></td>
</tr>
</tbody>
</table>

For **Output** on a **Horiz** split screen, the maximum value for **row** is 4.
getKey

gKey returns a number corresponding to the last key pressed, according to the key code diagram below. If no key has been pressed, getKey returns 0. Use getKey inside loops to transfer control, for example, when creating video games.

```
Program                     Output
PROGRAM:GETKEY
:While 1
 :getKey→K
 :While K=0
 :End
 :Disp K
 :If K=105
 :Disp K=105
 :End
 :Stop
```

Note: MATH, APPS, PRGM, and ENTER were pressed during program execution.

Note: You can press ON at any time during execution to break the program.

TI-84 Plus Key Code Diagram

ClrHome, ClrTable

ClrHome (clear home screen) clears the home screen during program execution.

ClrTable (clear table) clears the values in the table during program execution.

GetCalc(

GetCalc(gets the contents of variable on another TI-84 Plus and stores it to variable on the receiving TI-84 Plus. variable can be a real or complex number, list element, list name, matrix element, matrix name, string, Y= variable, graph database, or picture.
GetCalc(variable[, portflag])

By default, the TI-84 Plus uses the USB port if it is connected. If the USB cable is not connected, it uses the I/O port. If you want to specify either the USB or I/O port, use the following portflag numbers:

portflag=0 use USB port if connected;
portflag=1 use USB port;
portflag=2 use I/O port

Note: GetCalc() does not work between TI-82 and TI-83 Plus or a TI-82 and TI-84 Plus calculators.

Get(, Send()

Get() gets data from the CBL 2™ or CBR™ and stores it to variable on the receiving TI-84 Plus. variable can be a real number, list element, list name, matrix element, matrix name, string, Y= variable, graph database, or picture.

Get(variable)

Note: If you transfer a program that references the Get() command to the TI-84 Plus from a TI-82, the TI-84 Plus will interpret it as the Get() described above. Use GetCalc() to get data from another TI-84 Plus.

Send() sends the contents of variable to the CBL 2™ or CBR™. You cannot use it to send to another TI-84 Plus. variable can be a real number, list element, list name, matrix element, matrix name, string, Y= variable, graph database, or picture. variable can be a list of elements.

Send(variable)

Note: This program gets sound data and time in seconds from CBL 2™.

Note: You can access Get(), Send(), and GetCalc() from the CATALOG to execute them from the home screen (Chapter 15).

Calling Other Programs as Subroutines

Calling a Program from Another Program

On the TI-84 Plus, any stored program can be called from another program as a subroutine. Enter the name of the program to use as a subroutine on a line by itself.

You can enter a program name on a command line in either of two ways.

• Press PRGM ▶ to display the PRGM EXEC menu and select the name of the program prgmname is pasted to the current cursor location on a command line.
• Select `prgm` from the `PRGM CTL` menu, and then enter the program name.

`prgmname`

When `prgmname` is encountered during execution, the next command that the program executes is the first command in the second program. It returns to the subsequent command in the first program when it encounters either `Return` or the implied `Return` at the end of the second program.

<table>
<thead>
<tr>
<th>Program</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>PROGRAM: VOLUMCYL</code></td>
<td></td>
</tr>
<tr>
<td><code>Input "H": H</code></td>
<td></td>
</tr>
<tr>
<td><code>prgm VOLUMCYL</code></td>
<td></td>
</tr>
<tr>
<td><code>H=5</code></td>
<td></td>
</tr>
<tr>
<td><code>Disp V</code></td>
<td></td>
</tr>
<tr>
<td><code>62.83185397</code></td>
<td></td>
</tr>
<tr>
<td><code>Done</code></td>
<td></td>
</tr>
</tbody>
</table>

Subroutine ↓ ↑

<table>
<thead>
<tr>
<th>Program</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>PROGRAM: AREAIRC</code></td>
<td></td>
</tr>
<tr>
<td><code>D:=R</code></td>
<td></td>
</tr>
<tr>
<td><code>π*:R:=R</code></td>
<td></td>
</tr>
<tr>
<td><code>Return</code></td>
<td></td>
</tr>
</tbody>
</table>

Notes about Calling Programs

Variables are global.

`label` used with `Goto` and `Lbl` is local to the program where it is located. `label` in one program is not recognized by another program. You cannot use `Goto` to branch to a `label` in another program.

`Return` exits a subroutine and returns to the calling program, even if it is encountered within nested loops.

Running an Assembly Language Program

You can run programs written for the TI-84 Plus in assembly language. Typically, assembly language programs run much faster and provide greater control than the keystroke programs that you write with the built-in program editor.

Note: Because an assembly language program has greater control over the calculator, if your assembly language program has error(s), it may cause your calculator to reset and lose all data, programs, and applications stored in memory.

When you download an assembly language program, it is stored among the other programs as a `PRGM` menu item. You can:

• Transmit it using the TI-84 Plus communication link (Chapter 19).
• Delete it using the MEM MGMT DEL screen (Chapter 18).

To run an assembly Program, the syntax is: `Asm(assemblyprgmname)`
If you write an assembly language program, use the two instructions below from the CATALOG to identify and compile the program.

<table>
<thead>
<tr>
<th>Instructions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AsmComp(prgmASM1, prgmASM2)</td>
<td>Compiles an assembly language program written in ASCII and stores the hex version</td>
</tr>
<tr>
<td>AsmPrgm</td>
<td>Identifies an assembly language program; must be entered as the first line of an assembly language program</td>
</tr>
</tbody>
</table>

To compile an assembly program that you have written:

1. Follow the steps for writing a program (16-4) but be sure to include AsmPrgm as the first line of your program.
2. From the home screen, press 2nd [CATALOG] and then select AsmComp to paste it to the screen.
3. Press PRGM to display the PRGM EXEC menu.
4. Select the program you want to compile. It will be pasted to the home screen.
5. Press □ and then select prgm from the CATALOG.
6. Key in the name you have chosen for the output program.

 Note: This name must be unique — not a copy of an existing program name.
7. Press □ to complete the sequence.

 The sequence of the arguments should be as follows:

 AsmComp(prgmASM1, prgmASM2)
8. Press ENTER to compile your program and generate the output program.
Chapter 17: Activities

The Quadratic Formula

Note: This example uses MathPrint™ mode for real answers and Classic mode for non-real (complex) results. You can also use the Polynomial Root Finder/Simultaneous Equation Solver application to solve these types of problems with a quick set-up. This application comes preloaded on your TI-84 Plus and can be downloaded from education.ti.com.

Use the quadratic formula to solve the quadratic equations $2x^2 - 11x + 14 = 0$ and $2x^2 - 6x + 5 = 0$.

Graphing the Functions

Before you begin, look at the graphs of the functions to see the approximate locations of the solutions.

1. Press $\text{Y}=\text{to display the Y= editor.}$
2. Press $\text{2} \\left[\text{x},\text{t},\text{o},\text{n} \right] \left(\text{X}^2 \right) - 11 \text{x} + 14$ for Y_1, and then press \text{enter}.
3. Press $\text{2} \\left[\text{x},\text{t},\text{o},\text{n} \right] \left(\text{X}^2 \right) - 6 \text{x} + 5$ for Y_2.
4. Press Y= and select 4:ZDecimal. The graph of the functions displays.

You can see that the graph of the first function, $2x^2 - 11x + 14 = 0$, crosses the x-axis, so it has a real solution. The graph of the second function does not cross the x-axis, so it has a complex solution.
Entering a Calculation

Begin with the equation $2x^2 - 11x + 14 = 0$.

1. Press $\text{2 STO} \cdot \text{ALPHA A}$ to store the coefficient of the x^2 term.

2. Press ALPHA [:]. The colon allows you to enter more than one instruction on a line.

3. Press $\text{[} \times 11 \text{ STO} \cdot \text{ALPHA B}$ to store the coefficient of the x term. Press ALPHA [:] to enter a new instruction on the same line. Press $\text{14 STO} \cdot \text{ALPHA C}$ to store the constant.

4. Press ENTER to store the values to the variables A, B, and C.

The last value you stored is shown on the right side of the display. The cursor moves to the next line, ready for your next entry.

5. Press $\text{ALPHA [F]} \ 1 \text{ [} \text{ALPHA B \ + \ 2nd \ [\sqrt{]} \ ALPH}A \text{ B \ [} \times 4 \text{ ALPH}A \text{ A \ ALPHA C \ [} \times 2 \text{ ALPH}A \text{ A}$ to enter the expression for one of the solutions for the quadratic formula,

\[-b \pm \sqrt{b^2 - 4ac} \over 2a\]

6. Press ENTER to find one solution for the equation $2x^2 - 11x + 14 = 0$.

The answer is shown on the right side of the display. The cursor moves to the next line, ready for you to enter the next expression.

Converting to a Decimal

You can show the solution as a decimal.

1. Press $\text{ALPHA [F]} \ 4$ to select $\text{F} \rightarrow \text{D}$ from the FRAC shortcut menu.
To save keystrokes, you can scroll up to find an expression you entered, copy it, and then edit it for a new calculation.

3. Press \(\text{ENTRY} \) to highlight \(\frac{-b + \sqrt{b^2 - 4ac}}{2a} \) and then press \(\text{ENTRY} \) to paste it to the entry line.

4. Press \(\text{ENTRY} \) until the cursor is on the + sign in the formula. Press \(\text{ENTRY} \) to edit the quadratic-formula expression to become \(\frac{-b + \sqrt{b^2 - 4ac}}{2a} \).

5. Press \(\text{ENTRY} \) to find the other solution for the quadratic equation \(2x^2 - 11x + 14 = 0 \).

Displaying Complex Results

Now solve the equation \(2x^2 - 6x + 5 = 0 \). When you set \(a+bi \) complex number mode, the TI-84 Plus displays complex results.

1. Press \(\text{MODE} \) \(\text{ENTRY} \) (6 times), and then press \(\text{ENTRY} \) to highlight \(a+bi \). Press \(\text{ENTRY} \) to select \(a+bi \) complex-number mode.

2. Press \(\text{2nd} \) \(\text{QUIT} \) to return to the home screen, and then press \(\text{CLEAR} \) to clear it.
3. Press 2 \(\text{STO} \) \(\text{ALPHA} \) A \(\text{ALPHA} \) \(\text{[} \) 6 \\
\(\text{STO} \) \(\text{ALPHA} \) B \(\text{ALPHA} \) \(\text{[} \) 5 \(\text{STO} \) \(\text{ALPHA} \) C \(\text{ENTER} \).

The coefficient of the \(x^2\) term, the coefficient of the \(X\) term, and the constant for the new equation are stored to A, B, and C, respectively.

4. Enter the quadratic formula using Classic entry: \(\frac{-B \pm \sqrt{B^2-4AC}}{2A}\).

Because the solution is a complex number, you have to enter the formula using the division operation instead of using the \(\text{n/d}\) shortcut template. Complex numbers are not valid in the \(\text{n/d}\) template in input or output and will cause \textbf{Error: Data Type} to display.

5. Press \(\text{ENTER} \) to find one solution for the equation \(2x^2 - 6x + 5 = 0\).

6. Press \(\text{[} \) to highlight the quadratic-formula expression, and then press \(\text{ENTER} \) to paste it to the entry line.

7. Press \(\text{[} \) until the cursor is on the \(\pm\) sign in the formula. Press \(\text{[} \) to edit the quadratic-formula expression to become \(\frac{-B \pm \sqrt{B^2-4AC}}{2A}\).

8. Press \(\text{ENTER} \) to find the other solution for the quadratic equation: \(2x^2 - 6x + 5 = 0\).

Box with Lid

Defining a Function

Take a 20 cm \(\times\) 25 cm sheet of paper and cut \(X \times X\) squares from two corners. Cut \(X \times 12\frac{1}{2}\) cm rectangles from the other two corners as shown in the diagram below. Fold the paper into a box with a lid. What value of \(X\) would give your box the maximum volume \(V\)? Use the table and graphs to determine the solution.
Begin by defining a function that describes the volume of the box.

From the diagram:
\[2X + A = 20\]
\[2X + 2B = 25\]
\[V = A + B + X\]

Substituting:
\[V = (20 - 2X)(25/2 - X)X\]

1. Press \(\text{Y=} \) to display the \(\text{Y=} \) editor, which is where you define functions for tables and graphing.

2. Press \(20 \Rightarrow 2 \) \(\text{X,T,\theta,n} \) \(\Rightarrow 1 \) \(25 \) \(\text{ALPHA} \) \(\text{F1} \) \(1 \) \(2 \) \(\text{X,T,\theta,n} \) \(\Rightarrow \) \(\text{ENTER} \) to define the volume function as \(Y_1 \) in terms of \(X \).

\(\text{X,T,\theta,n} \) lets you enter \(X \) quickly, without having to press \(\text{ALPHA} \). The highlighted \(\Rightarrow \) sign indicates that \(Y_1 \) is selected.

Defining a Table of Values

The table feature of the TI-84 Plus displays numeric information about a function. You can use a table of values from the function you just defined to estimate an answer to the problem.

1. Press \(\text{2nd} \) \(\text{[TBLSET]} \) to display the \(\text{TABLE SETUP} \) menu.
2. Press \(\text{ENTER} \) to accept \(\text{TblStart}=0 \).
3. Press \(1 \) \(\text{ENTER} \) to define the table increment \(\Delta \text{Tbl}=1 \). Leave \(\text{Indpnt: Auto} \) and \(\text{Depend: Auto} \) so that the table will be generated automatically.
4. Press \(\text{2nd} \) \(\text{[TABLE]} \) to display the table.

Notice that the maximum value for \(Y_1 \) (box's volume) occurs when \(X \) is about 4, between 3 and 5.
5. Press and hold [] to scroll the table until a negative result for Y_1 is displayed.

Notice that the maximum length of X for this problem occurs where the sign of Y_1 (box's volume) changes from positive to negative, between 10 and 11.

6. Press 2nd [TBLSET].

Notice that TblStart has changed to 5 to reflect the first line of the table as it was last displayed. (In step 5, the first value of X displayed in the table is 5.)

Zooming In on the Table

You can adjust the way a table is displayed to get more information about a defined function. With smaller values for ΔTbl, you can zoom in on the table. You can change the values on the TBLSET screen by pressing 2nd [TBLSET] or by pressing [] on the TABLE screen

1. Press 2nd [TABLE].
2. Press [] to move the cursor to highlight 3.
3. Press []. The ΔTbl displays on the entry line.
4. Enter [] 1 [ENTER]. The table updates, showing the changes in X in increments of 0.1.

Notice that the maximum value for Y_1 in this table view is 410.26, which occurs at $X=3.7$. Therefore, the maximum occurs where $3.6<X<3.8$.

5. With $X=3.6$ highlighted, press [] 01 [ENTER] to set ΔTbl=0.01.

6. Press [] and [] to scroll the table.

Four equivalent maximum values are shown, 410.26 at $X=3.67$, 3.68, 3.69, and 3.70.
7. Press † or ‡ to move the cursor to 3.67. Press × to move the cursor into the Y1 column.

The value of Y1 at X=3.67 is displayed on the bottom line in full precision as 410.261226.

8. Press † to display the other maximum.

The value of Y1 at X=3.68 in full precision is 410.264064, at X=3.69 is 410.262318 and at X=3.7 is 410.256.

The maximum volume of the box would occur at 3.68 if you could measure and cut the paper at .01-centimeter increments.

Setting the Viewing Window

You also can use the graphing features of the TI-84 Plus to find the maximum value of a previously defined function. When the graph is activated, the viewing window defines the displayed portion of the coordinate plane. The values of the window variables determine the size of the viewing window.

1. Press WINDOW to display the window editor, where you can view and edit the values of the window variables.

The standard window variables define the viewing window as shown. Xmin, Xmax, Ymin, and Ymax define the boundaries of the display. Xscl and Yscl define the distance between tick marks on the X and Y axes. Xres controls resolution.

2. Press 0 ENTER to define Xmin.

3. Press 20 ‡ 2 to define Xmax using an expression.

Note: For this example, the division sign is used for the calculation. However, you can use n/d entry format where fraction output can be experienced, depending on mode settings.
4. Press \textbf{ENTER}. The expression is evaluated, and 10 is stored in \textit{Xmax}. Press \textbf{ENTER} to accept \textit{Xscl} as 1.

5. Press 0 \textbf{ENTER} 500 \textbf{ENTER} 100 \textbf{ENTER} 1 \textbf{ENTER} to define the remaining window variables.

\textbf{Displaying and Tracing the Graph}

Now that you have defined the function to be graphed and the window in which to graph it, you can display and explore the graph. You can trace along a function using the \textbf{TRACE} feature.

1. Press \textbf{GRAPH} to graph the selected function in the viewing window.

 The graph of \(Y_1 = (20 - 2X)(25/2 - X)X \) is displayed.

2. Press \textbf{} to activate the free-moving graph cursor.

 The \(X \) and \(Y \) coordinate values for the position of the graph cursor are displayed on the bottom line.

3. Press \(\langle \), \(\rangle \), \(\downarrow \), and \(\uparrow \) to move the free-moving cursor to the apparent maximum of the function.

 As you move the cursor, the \(X \) and \(Y \) coordinate values are updated continually.

4. Press \textbf{TRACE}. The trace cursor is displayed on the \(Y_1 \) function.

 The function that you are tracing is displayed in the top-left corner.

5. Press \(\langle \) and \(\rangle \) to trace along \(Y_1 \), one \(X \) dot at a time, evaluating \(Y_1 \) at each \(X \).

 You also can enter your estimate for the maximum value of \(X \).

6. Press 3 \(\square \) 8. When you press a number key while in \textbf{TRACE}, the \(X= \) prompt is displayed in the bottom-left corner.
7. Press **[ENTER]**.

 The trace cursor jumps to the point on the Y1 function evaluated at X=3.8.

8. Press **[✓]** and **[✓]** until you are on the maximum Y value.

 This is the maximum of Y1(X) for the X pixel values. The actual, precise maximum may lie between pixel values.

Zooming In on the Graph

To help identify maximums, minimums, roots, and intersections of functions, you can magnify the viewing window at a specific location using the **ZOOM** instructions.

1. Press **[ZOOM]** to display the ZOOM menu.

 This menu is a typical TI-84 Plus menu. To select an item, you can either press the number or letter next to the item, or you can press **[†]** until the item number or letter is highlighted, and then press **[ENTER]**.

2. Press **[2]** to select 2:Zoom In.

 The graph is displayed again. The cursor has changed to indicate that you are using a ZOOM instruction.

3. With the cursor near the maximum value of the function, press **[ENTER]**.

 The new viewing window is displayed. Both Xmax-Xmin and Ymax-Ymin have been adjusted by factors of 4, the default values for the zoom factors.

4. Press **[†]** and **[†]** to search for the maximum value.

5. Press **[WINDOW]** to display the new window settings.

 Note: To return to the previous graph, press **ZOOM [†] 1:ZPrevious**.
Finding the Calculated Maximum

You can use a **CALCULATE** menu operation to calculate a local maximum of a function. To do this, pick a point to the left of where you think the maximum is on the graph. This is called the left bound. Next, pick a point to the right of the maximum. This is called the right bound. Finally, guess the maximum by moving the cursor to a point between the left and right bounds. With this information, the maximum can be calculated by the methods programmed in the TI-84 Plus.

1. Press $\text{2nd} \ [\text{CALC}]$ to display the **CALCULATE** menu. Press 4 to select 4:maximum.
 The graph is displayed again with a **Left Bound?** prompt.

2. Press Δ to trace along the curve to a point to the left of the maximum, and then press [ENTER].
 A 4 at the top of the screen indicates the selected bound.
 A **Right Bound?** prompt is displayed.

3. Press ∇ to trace along the curve to a point to the right of the maximum, and then press [ENTER].
 A 3 at the top of the screen indicates the selected bound.
 A **Guess?** prompt is displayed.

4. Press Δ to trace to a point near the maximum, and then press [ENTER].
 Or, press 3 $\boxed{8}$, and then press [ENTER] to enter a guess for the maximum.

 When you press a number key in **TRACE**, the $X=$ prompt is displayed in the bottom-left corner.

 Notice how the values for the calculated maximum compare with the maximums found with the free-moving cursor, the trace cursor, and the table.

 Note: In steps 2 and 3 above, you can enter values directly for Left Bound and Right Bound, in the same way as described in step 4.
Comparing Test Results Using Box Plots

Problem
An experiment found a significant difference between boys and girls pertaining to their ability to identify objects held in their left hands, which are controlled by the right side of their brains, versus their right hands, which are controlled by the left side of their brains. The TI Graphics team conducted a similar test for adult men and women.

The test involved 30 small objects, which participants were not allowed to see. First, they held 15 of the objects one by one in their left hands and guessed what they were. Then they held the other 15 objects one by one in their right hands and guessed what they were. Use box plots to compare visually the correct-guess data from this table.

Each row in the table represents the results observed for one subject. Note that 10 women and 12 men were tested.

<table>
<thead>
<tr>
<th>Correct Guesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women Left</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Procedure
1. Press [STAT] 5 to select 5:SetUpEditor. Enter list names WLEFT, WRGHT, MLEFT, and MRGHT, separated by commas. Press [ENTER]. The stat list editor now contains only these four lists. (See Chapter 11: Lists for detailed instructions for using the SetUpEditor.)
3. Enter into WLEFT the number of correct guesses each woman made using her left hand (Women Left). Press [►] to move to WRGHT and enter the number of correct guesses each woman made using her right hand (Women Right).
4. Likewise, enter each man’s correct guesses in MLEFT (Men Left) and MRGHT (Men Right).
5. Press \[\text{2nd} \text{[STAT PLOT]}\]. Select 1:Plot1. Turn on plot 1; define it as a modified box plot \(\text{ô}^\circ\) that uses Xlist as WLEFT. Move the cursor to the top line and select Plot2. Turn on plot 2; define it as a modified box plot that uses Xlist as WRGHT. (See Chapter 12: Statistics for detailed information on using Stat Plots.)

6. Press \(\text{Y=}\). Turn off all functions.

7. Press \(\text{WINDOW}\). Set Xscl=1 and Yscl=0. Press \(\text{ZOOM}\) 9 to select 9:ZoomStat. This adjusts the viewing window and displays the box plots for the women’s results.

8. Press \(\text{TRACE}\).

[Diagram of box plots for women’s left and right hands]

Use \(\text{\textlangle right bracket}}\) and \(\text{\textrangle left bracket}\) to examine minX, Q1, Med, Q3, and maxX for each plot. Notice the outlier to the women’s right-hand data. What is the median for the left hand? For the right hand? With which hand were the women more accurate guessers, according to the box plots?

9. Examine the men’s results. Redefine plot 1 to use MLEFT, redefine plot 2 to use MRGHT. Press \(\text{TRACE}\).

[Diagram of box plots for men’s left and right hands]

Press \(\text{\textlangle right bracket}}\) and \(\text{\textrangle left bracket}\) to examine minX, Q1, Med, Q3, and maxX for each plot. What difference do you see between the plots?

10. Compare the left-hand results. Redefine plot 1 to use WLEFT, redefine plot 2 to use MLEFT, and then press \(\text{TRACE}\) to examine minX, Q1, Med, Q3, and maxX for each plot. Who were the better left-hand guessers, men or women?

11. Compare the right-hand results. Define plot 1 to use WRGHT, define plot 2 to use MRGHT, and then press \(\text{TRACE}\) to examine minX, Q1, Med, Q3, and maxX for each plot. Who were the better right-hand guessers?

In the original experiment boys did not guess as well with right hands, while girls guessed equally well with either hand. This is not what our box plots show for adults. Do you think that this is because adults have learned to adapt or because our sample was not large enough?
Graphing Piecewise Functions

Problem

The fine for speeding on a road with a speed limit of 45 kilometers per hour (kph) is 50; plus 5 for each kph from 46 to 55 kph; plus 10 for each kph from 56 to 65 kph; plus 20 for each kph from 66 kph and above. Graph the piecewise function that describes the cost of the ticket.

The fine (Y) as a function of kilometers per hour (X) is:

\[Y = \begin{cases} 0 & 0 < X \leq 45 \\ 50 + 5(X - 45) & 45 < X \leq 55 \\ 50 + 5 \times 10 + 10(X - 55) & 55 < X \leq 65 \\ 50 + 5 \times 10 + 10 \times 10 + 20(X - 65) & 65 < X \end{cases} \]

which simplifies to:

\[Y = \begin{cases} 0 & 0 < X \leq 45 \\ 50 + 5(X - 45) & 45 < X \leq 55 \\ 100 + 10(X - 55) & 55 < X \leq 65 \\ 200 + 20(X - 65) & 65 < X \end{cases} \]

Procedure

1. Press MODE. Select Func and Classic.

2. Press \(\boxed{2} \). Turn off all functions and stat plots. Enter the \(Y= \) function to describe the fine. Use the TEST menu operations to define the piecewise function. Set the graph style for \(Y1 \) to \(\boxed{\text{\textbullet}} \) (dot).

3. Press \(\boxed{\text{WINDOW}} \) and set \(\text{Xmin}=2, \text{Xscl}=10, \text{Ymin}=-5, \text{Yscl}=10 \) and \(\Delta \text{X}=1 \). Ignore \(\text{Xmax} \) and \(\text{Ymax} \); they are set in step 4.
4. Press $\text{2nd} \ [\text{QUIT}]$ to return to the home screen. Store 5 to ΔY. ΔX and ΔY are on the \textbf{VARS Window X/Y} secondary menu. ΔX and ΔY specify the horizontal and vertical distance between the centers of adjacent pixels. Integer values for ΔX and ΔY produce nice values for tracing.

5. Press TRACE to plot the function. At what speed does the ticket exceed 250?

![Graph of inequality](image)

\section*{Graphing Inequalities}

\subsection*{Problem}

Graph the inequality $0.4x^3 - 3x + 5 < 0.2x + 4$. Use the \textbf{TEST} menu operations to explore the values of \textit{X} where the inequality is true and where it is false.

\textbf{Note:} You can also investigate graphing inequalities using the \textbf{Inequality Graphing} application. The application is pre-loaded on your TI-84 Plus and can be downloaded from \texttt{education.ti.com}.

\subsection*{Procedure}

1. Press MODE. Select \textbf{Dot}, \textbf{Simul}, and the default settings. Setting \textbf{Dot} mode changes all graph style icons to \texttt{.} (dot) in the \textit{Y=} editor.

2. Press Y=. Turn off all functions and stat plots. Enter the left side of the inequality as \textit{Y4} and the right side as \textit{Y5}.

\begin{center}

<table>
<thead>
<tr>
<th>Plot1</th>
<th>Plot2</th>
<th>Plot3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y_1=$</td>
<td>$Y_2=$</td>
<td>$Y_3=$</td>
</tr>
<tr>
<td>$Y_4=0.4x^3-3x+5$</td>
<td>$Y_5=0.2x+4$</td>
<td>$Y_6=$</td>
</tr>
</tbody>
</table>

\end{center}

3. Enter the statement of the inequality as \textit{Y6}. This function evaluates to 1 if true or 0 if false.

\begin{center}

<table>
<thead>
<tr>
<th>Plot1</th>
<th>Plot2</th>
<th>Plot3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y_1=$</td>
<td>$Y_2=$</td>
<td>$Y_3=$</td>
</tr>
<tr>
<td>$Y_4=0.4x^3-3x+5$</td>
<td>$Y_5=0.2x+4$</td>
<td>Y_6 \texttt{Y4 < Y5}</td>
</tr>
</tbody>
</table>

\textbf{Note:} You can use the \textbf{YVARS} shortcut menu to paste \textit{Y4} and \textit{Y5} in the \textit{Y=} editor.

4. Press $\text{ZOOM} \ 6$ to graph the inequality in the standard window.
5. Press \textbf{TRACE} \(\uparrow \downarrow\) to move to \(Y6\). Then press \(<\) and \(\triangleright\) to trace the inequality, observing the value of \(Y\).

When you trace, you can see that \(Y=1\) indicates that \(Y4<Y5\) is true and that \(Y=0\) indicates that \(Y4<Y5\) is false.

6. Press \(\text{Y}=.\). Turn off \(Y4\), \(Y5\), and \(Y6\). Enter equations to graph only the inequality.

7. Press \textbf{TRACE}.

Notice that the values of \(Y7\) and \(Y8\) are zero where the inequality is false. You only see the intervals of the graph where \(Y4<Y5\) because intervals that are false are multiplied by 0 (\(Y6\ast Y4\) and \(Y6\ast Y5\))

\textbf{Solving a System of Nonlinear Equations}

\textbf{Problem}

Using a graph, solve the equation \(x^3-2x=2\cos(x)\). Stated another way, solve the system of two equations and two unknowns: \(y = x^3-2x\) and \(y = 2\cos(x)\). Use \textbf{ZOOM} factors to control the decimal places displayed on the graph and use \[\text{2nd} \quad \text{CALC}\] 5:intersect to find an approximate solution.

\textbf{Procedure}

1. Press \textbf{MODE}. Select the default mode settings. Press \(\text{Y}=.\). Turn off all functions and stat plots. Enter the functions.
2. Press \texttt{ZOOM} 4 to select \texttt{4:ZDecimal}. The display shows that two solutions may exist (points where the two functions appear to intersect).

![Graph](image)

3. Press \texttt{ZOOM} \(\rightarrow \) 4 to select \texttt{4:SetFactors} from the \texttt{ZOOM MEMORY} menu. Set \texttt{XFact=10} and \texttt{YFact=10}.

4. Press \texttt{ZOOM} 2 to select \texttt{2:Zoom In}. Use [\(\Delta \), \(\bigtriangleup \), \(\bigtriangledown \), and \(\bigtriangledown \)] to move the free-moving cursor onto the apparent intersection of the functions on the right side of the display. As you move the cursor, notice that the \(X \) and \(Y \) values have one decimal place.

5. Press \texttt{ENTER} to zoom in. Move the cursor over the intersection. As you move the cursor, notice that now the \(X \) and \(Y \) values have two decimal places.

6. Press \texttt{ENTER} to zoom in again. Move the free-moving cursor onto a point exactly on the intersection. Notice the number of decimal places.

7. Press \texttt{2nd} [\texttt{CALC}] 5 to select \texttt{5:intersect}. Press \texttt{ENTER} to select the first curve and \texttt{ENTER} to select the second curve. To guess, move the trace cursor near the intersection. Press \texttt{ENTER}. What are the coordinates of the intersection point?

8. Press \texttt{ZOOM} 4 to select \texttt{4:ZDecimal} to redisplay the original graph.

9. Press \texttt{ZOOM}. Select \texttt{2:Zoom In} and repeat steps 4 through 8 to explore the apparent function intersection on the left side of the display.

Using a Program to Create the Sierpinski Triangle

Setting up the Program

This program creates a drawing of a famous fractal, the Sierpinski Triangle, and stores the drawing to a picture. To begin, press \texttt{PRGM} \(\rightarrow \) 1. Name the program \texttt{SIERPINS}, and then press \texttt{ENTER}. The program editor is displayed.

\textbf{Note}: After you run this program, press \texttt{2nd} [\texttt{FORMAT}] \(\bigtriangleup \) \(\bigtriangleup \) \(\bigtriangleup \) \texttt{ENTER} to turn on the axes in the graph screen.

Program

```
PROGRAM:SIERPINS
:FnOff :ClrDraw
:PlotsOff
:AxesOff
:0 \rightarrow \texttt{Xmin} :1 \rightarrow \texttt{Xmax}
:0 \rightarrow \texttt{Ymin} :1 \rightarrow \texttt{Ymax}
:rand \rightarrow \texttt{X} :rand \rightarrow \texttt{Y}
```

Set viewing window.
Graphing Cobweb Attractors

Problem

Using Web format, you can identify points with attracting and repelling behavior in sequence graphing.

Procedure

2. Press [Y=]. Clear all functions and turn off all stat plots. Enter the sequence that corresponds to the expression $Y = K X (1-X)$.

 $u(n)=Ku(n-1)(1-u(n-1))$

 $u(n)_{\text{Min}} = .01$
3. Press \[\text{2nd} \text{ [QUIT]}\] to return to the home screen, and then store 2.9 to \(K\).

4. Press \[\text{WINDOW}\]. Set the window variables.

\[
\begin{array}{ccc}
\text{Min}=0 & \text{Xmin}=0 & \text{Ymin}=-.26 \\
\text{Max}=10 & \text{Xmax}=1 & \text{Ymax}=1.1 \\
\text{PlotStart}=1 & \text{Xscl}=1 & \text{Yscl}=1 \\
\text{PlotStep}=1 & & \\
\end{array}
\]

5. Press \[\text{TRACE}\] to display the graph, and then press \[\text{A}\] to trace the cobweb. This is a cobweb with one attractor.

6. Change \(K\) to 3.44 and trace the graph to show a cobweb with two attractors.

7. Change \(K\) to 3.54 and trace the graph to show a cobweb with four attractors.

\[
\begin{array}{c}
\text{\(u_1=\frac{\sin(u_0)}{\sin(u_0/2)}\)} \\
\text{\(v_1=v_0\)} \\
\text{\(\text{Min}=-.26, \text{Max}=1.1\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(u_1=\frac{\sin(u_0)}{\sin(u_0/2)}\)} \\
\text{\(v_1=v_0\)} \\
\text{\(\text{Min}=-.26, \text{Max}=1.1\)} \\
\end{array}
\]

Using a Program to Guess the Coefficients

Setting Up the Program

This program graphs the function \(A \sin(BX)\) with random integer coefficients between 1 and 10. Try to guess the coefficients and graph your guess as \(C \sin(DX)\). The program continues until your guess is correct.

Note: This program changes the graph window and graph styles. After you run the program, you can change individual settings as needed or you can press \[\text{2nd} \text{ [MEM]}\] \(7\ 2\ 2\) to return to default settings.

Programs typically do not restore your settings in MODE, \(Y=\), WINDOW and other locations that were used by the program. This is dependent on who created the program.

Program

\[
\text{PROGRAM:GUESS} \\
: \text{PlotsOff} \ : \text{Func} \\
: \text{FnOff} \ : \text{Radian} \\
: \text{ClrHome}
\]

Chapter 17: Activities 313
Note: The Guess My Coefficients App is an educational game that challenges you to enter the correct coefficients for graphs of linear, quadratic and absolute value functions. This app is available at education.ti.com.
Graphing the Unit Circle and Trigonometric Curves

Problem

Using parametric graphing mode, graph the unit circle and the sine curve to show the relationship between them.

Any function that can be plotted in Func mode can be plotted in Par mode by defining the X component as T and the Y component as F(T).

Procedure

1. Press **MODE**. Select Par, Simul, and the default settings.
2. Press **WINDOW**. Set the viewing window.

 \[
 \begin{align*}
 &T_{\text{min}}=0 & &X_{\text{min}}=-2 & &Y_{\text{min}}=-3 \\
 &T_{\text{max}}=2\pi & &X_{\text{max}}=7.4 & &Y_{\text{max}}=3 \\
 &T_{\text{step}}=.1 & &X_{\text{scl}}=\pi/2 & &Y_{\text{scl}}=1
 \end{align*}
 \]

3. Press **VARS**. Turn off all functions and stat plots. Enter the expressions to define the unit circle centered on (0,0).

4. Enter the expressions to define the sine curve.

5. Press **TRACE**. As the graph is plotting, you may press **ENTER** to pause and **ENTER** again to resume graphing as you watch the sine function “unwrap” from the unit circle.

Note:

- You can generalize the unwrapping. Replace \(\sin(T) \) in \(Y2T \) with any other trig function to unwrap that function.
• You can graph the functions again by turning the functions off and then turning them back on on the Y= editor or by using the FuncOFF and FuncON commands on the home screen.

Finding the Area between Curves

Problem

Find the area of the region bounded by:

\[
\begin{align*}
f(x) & = 300x/(x^2 + 625) \\
g(x) & = 3\cos(.1x) \\
x & = 75
\end{align*}
\]

Procedure

1. Press [MODE]. Select the default mode settings.
2. Press [WINDOW]. Set the viewing window.

 \[
 \begin{align*}
 X_{\text{min}} &= 0 & \quad Y_{\text{min}} &= -5 & \quad X_{\text{res}} &= 1 \\
 X_{\text{max}} &= 100 & \quad Y_{\text{max}} &= 10 \\
 X_{\text{scl}} &= 10 & \quad Y_{\text{scl}} &= 1
 \end{align*}
 \]
3. Press [Y=]. Turn off all functions and stat plots. Enter the upper and lower functions.

 \[
 \begin{align*}
 Y_1 &= 300X/(X^2+625) \\
 Y_2 &= 3\cos(.1x)
 \end{align*}
 \]
4. Press [2nd] [CALC] 5 to select 5:Intersect. The graph is displayed. Select a first curve, second curve, and guess for the intersection toward the left side of the display. The solution is displayed, and the value of \(X\) at the intersection, which is the lower limit of the integral, is stored in \(\text{Ans}\) and \(X\).
5. Press [2nd] [QUIT] to go to the home screen. Press [2nd] [DRAW] 7 and use Shade(to see the area graphically.

 \[
 \text{Shade}(Y_2,Y_1,\text{Ans},75)
 \]
6. Press [2nd] [QUIT] to return to the home screen. Enter the expression to evaluate the integral for the shaded region.

 \[
 \text{fnInt}(Y_1 - Y_2,X,\text{Ans},75)
 \]

 The area is 325.839962.
Using Parametric Equations: Ferris Wheel Problem

Problem

Using two pairs of parametric equations, determine when two objects in motion are closest to each other in the same plane.

A ferris wheel has a diameter (d) of 20 meters and is rotating counterclockwise at a rate (s) of one revolution every 12 seconds. The parametric equations below describe the location of a ferris wheel passenger at time T, where α is the angle of rotation, (0,0) is the bottom center of the ferris wheel, and (10,10) is the passenger’s location at the rightmost point, when T=0.

\[
\begin{align*}
X(T) &= r \cos \alpha \\
Y(T) &= r + r \sin \alpha
\end{align*}
\]

where \(\alpha = 2\pi Ts\) and \(r = d/2\)

A person standing on the ground throws a ball to the ferris wheel passenger. The thrower’s arm is at the same height as the bottom of the ferris wheel, but 25 meters (b) to the right of the ferris wheel’s lowest point (25,0). The person throws the ball with velocity (v₀) of 22 meters per second at an angle (θ) of 66° from the horizontal. The parametric equations below describe the location of the ball at time T.

\[
\begin{align*}
X(T) &= b - Tv_0 \cos \theta \\
Y(T) &= Tv_0 \sin \theta - \left(\frac{g}{2}\right) T^2
\end{align*}
\]

where \(g = 9.8 \text{ m/sec}^2\)

Procedure

1. Press [MODE]. Select Par, Simul, and the default settings. Simul (simultaneous) mode simulates the two objects in motion over time.
2. Press [WINDOW]. Set the viewing window.

Tmin=0	Xmin=-13	Ymin=0
Tmax=12	Xmax=34	Ymax=31
Tstep=.1	Xscl=10	Yscl=10

3. Press [Y=]. Turn off all functions and stat plots. Enter the expressions to define the path of the ferris wheel and the path of the ball. Set the graph style for X2T to ï (path).

\[
\begin{align*}
X1T &= 10 \cos(\pi T/6) \\
Y1T &= 10 + 10 \sin(\pi T/6) \\
X2T &= 25 - 22T \cos(66°) \\
Y2T &= 22T \sin(66°)
\end{align*}
\]

\(-<(9.8/2)T^2\)

Note: Try setting the graph styles to ë X1T and ë X2T, which simulates a chair on the ferris wheel and the ball flying through the air when you press [GRAPH].
4. Press \textbf{GRAPH} to graph the equations. Watch closely as they are plotted. Notice that the ball and the ferris wheel passenger appear to be closest where the paths cross in the top-right quadrant of the ferris wheel.

5. Press \textbf{WINDOW}. Change the viewing window to concentrate on this portion of the graph.

\begin{align*}
T_{\text{min}} &= 1 & X_{\text{min}} &= 0 & Y_{\text{min}} &= 10 \\
T_{\text{max}} &= 3 & X_{\text{max}} &= 23.5 & Y_{\text{max}} &= 25.5 \\
T_{\text{step}} &= 0.03 & X_{\text{scl}} &= 10 & Y_{\text{scl}} &= 10
\end{align*}

6. Press \textbf{TRACE}. After the graph is plotted, press \(^\times\) to move near the point on the ferris wheel where the paths cross. Notice the values of \(X\), \(Y\), and \(T\).

7. Press \(^\leftarrow\) to move to the path of the ball. Notice the values of \(X\) and \(Y\) (\(T\) is unchanged). Notice where the cursor is located. This is the position of the ball when the ferris wheel passenger passes the intersection. Did the ball or the passenger reach the intersection first?

You can use \textbf{TRACE} to, in effect, take snapshots in time and explore the relative behavior of two objects in motion.
Demonstrating the Fundamental Theorem of Calculus

Problem 1

Using the functions \texttt{fnInt} and \texttt{nDeriv} from the \texttt{FUNC} shortcut menu or the \texttt{MATH} menu to graph functions defined by integrals and derivatives demonstrates graphically that:

\begin{equation}
F(x) = \int_{1}^{x} \frac{1}{t} \, dt = \ln(x), x > 0
\end{equation}

and that

\begin{equation}
\frac{d}{dx} \left[\int_{1}^{x} \frac{1}{t} \, dt \right] = \frac{1}{x}
\end{equation}

Procedure 1

1. Press \texttt{MODE}. Select the default settings.
2. Press \texttt{WINDOW}. Set the viewing window.
 \[X_{\text{min}} = 0.01, \quad Y_{\text{min}} = -1.5, \quad X_{\text{max}} = 10, \quad Y_{\text{max}} = 2.5, \quad X_{\text{scl}} = 1, \quad Y_{\text{scl}} = 1 \]
3. Press \texttt{ON}. Turn off all functions and stat plots. Enter the numerical integral of $1/T$ from 1 to X and the function $\ln(X)$. Set the graph style for Y_1 to \(\backslash\) (line) and Y_2 to \(\backslash\) (path).
4. Press \texttt{TRACE}. Press \leftarrow, \rightarrow, \uparrow, and \downarrow to compare the values of Y_1 and Y_2.
5. Press \texttt{ON}. Turn off Y_1 and Y_2, and then enter the numerical derivative of the integral of $1/X$ and the function $1/X$. Set the graph style for Y_3 to \(\backslash\) (line) and Y_4 to \(\backslash\) (thick).
6. Press **TRACE**. Again, use the cursor keys to compare the values of the two graphed functions, Y3 and Y4.

![Graphs of Y3 and Y4](image)

Problem 2

Explore the functions defined by

\[y = \int_{-2}^{x} t^2 \, dt, \quad \int_{0}^{x} t^2 \, dt, \quad \text{and} \quad \int_{2}^{x} t^2 \, dt \]

Procedure 2

1. Press **Y=**. Turn off all functions and stat plots. Use a list to define these three functions simultaneously. Store the function in Y5.

![List definition of functions](image)

2. Press **ZOOM 6** to select **ZStandard**. The graphs are displayed as each calculation of the integral and derivative occurs at the pixel point, which may take some time.

3. Press **TRACE**. Notice that the functions appear identical, only shifted vertically by a constant.

4. Press **Y=**. Enter the numerical derivative of Y5 in Y6.

![List definition of derivatives](image)
5. Press \texttt{TRACE}. Notice that although the three graphs defined by \(Y5 \) are different, they share the same derivative.

\begin{center}
\includegraphics[width=0.5\textwidth]{image}
\end{center}

\section*{Computing Areas of Regular N-Sided Polygons}

\subsection*{Problem}
Use the equation solver to store a formula for the area of a regular N-sided polygon, and then solve for each variable, given the other variables. Explore the fact that the limiting case is the area of a circle, \(\pi r^2 \).

Consider the formula \(A = NB^2 \sin(\pi/N) \cos(\pi/N) \) for the area of a regular polygon with \(N \) sides of equal length and \(B \) distance from the center to a vertex.

\begin{center}
\begin{tabular}{ccc}
N = 4 sides & N = 8 sides & N = 12 sides \\
\end{tabular}
\end{center}

\subsection*{Procedure}
1. Press \texttt{MATH [ALPHA] B} to select \texttt{B:Solver} from the \texttt{MATH} menu. Either the equation editor or the interactive solver editor is displayed. If the interactive solver editor is displayed, press \texttt{}} to display the equation editor.

2. Enter the formula as \(0 = A - NB^2 \sin(\pi/N) \cos(\pi/N) \), and then press \texttt{ENTER}. The interactive solver editor is displayed.

\begin{center}
\begin{verbatim}
A-\(NB^2 \sin(\pi/N) \cos(\pi/N) \)=0
A=0
N=8
B=6
\texttt{bound}=[-1\cdot00001, 1]
\end{verbatim}
\end{center}

3. Enter \(N=4 \) and \(B=6 \) to find the area \((A) \) of a square with a distance \((B) \) from center to vertex of 6 centimeters.

4. Press \texttt{[VARS]} to move the cursor onto \(A \), and then press \texttt{[ALPHA] [SOLVE]}. The solution for \(A \) is displayed on the interactive solver editor.
5. Now solve for B for a given area with various number of sides. Enter $A=200$ and $N=6$. To find the distance B, move the cursor onto B, and then press [ALPHA] [SOLVE].

6. Enter $N=8$. To find the distance B, move the cursor onto B, and then press [ALPHA] [SOLVE]. Find B for $N=9$, and then for $N=10$.

Find the area given $B=6$, and $N=10, 100, 150, 1000$, and 10000. Compare your results with πb^2 (the area of a circle with radius 6), which is approximately 113.097.

7. Enter $B=6$. To find the area A, move the cursor onto A, and then press [ALPHA] [SOLVE]. Find A for $N=10$, then $N=100$, then $N=150$, then $N=1000$, and finally $N=10000$. Notice that as N gets large, the area A approaches πb^2.

Now graph the equation to see visually how the area changes as the number of sides gets large.

9. Press \textit{WINDOW}. Set the viewing window.

\begin{align*}
\text{Xmin} &= 0 & \text{Ymin} &= 0 & \text{Xres} &= 1 \\
\text{Xmax} &= 200 & \text{Ymax} &= 150 \\
\text{Xscl} &= 10 & \text{Yscl} &= 10
\end{align*}

10. Press \textit{Y=}. Turn off all functions and stat plots. Enter the equation for the area. Use \(X \) in place of \(N \). Set the graph styles as shown.

\begin{align*}
Y_1 &= \frac{1}{2} \sin(\pi/X) \cos(\pi/X) \\
Y_2 &= \pi \text{B}^2
\end{align*}

11. Press \textit{TRACE}. After the graph is plotted, press \textbf{100 ENTER} to trace to \(X=100 \). Press \textbf{150 ENTER}. Press \textbf{188 ENTER}. Notice that as \(X \) increases, the value of \(Y \) converges to \(\pi \text{B}^2 \), which is approximately 113.097. \(Y_2 = \pi \text{B}^2 \) (the area of the circle) is a horizontal asymptote to \(Y_1 \). The area of an \(N \)-sided regular polygon, with \(r \) as the distance from the center to a vertex, approaches the area of a circle with radius \(r \) (\(\pi r^2 \)) as \(N \) gets large.

\[
Y_2 = \frac{1}{2} \sin(\pi/X) \cos(\pi/X) \\
Y_3 = \pi \text{B}^2
\]

\begin{align*}
Y_2 &= 113.07611 \\
Y_3 &= 113.08724
\end{align*}

\section*{Computing and Graphing Mortgage Payments}

\textbf{Problem}

You are a loan officer at a mortgage company, and you recently closed on a 30-year home mortgage at 8 percent interest with monthly payments of 800. The new home owners want to know how much will be applied to the interest and how much will be applied to the principal when they make the 240th payment 20 years from now.

\textbf{Procedure}

1. Press \textit{MODE} and set the fixed-decimal mode to 2 decimal places. Set the other mode settings to the defaults.
2. Press **APPS** **ENTER** **ENTER** to display the **TVM Solver**. Enter these values.

 ![TVM Solver input values](image)

 Note: Enter a positive number (800) to show **PMT** as a cash inflow. Payment values will be displayed as positive numbers on the graph. Enter 0 for **FV**, since the future value of a loan is 0 once it is paid in full. Enter **PMT**: **END**, since payment is due at the end of a period.

3. Move the cursor onto the **PV**= prompt, and then press **[ALPHA]** **[SOLVE]**. The present value, or mortgage amount, of the house is displayed at the **PV**= prompt.

 ![Present value of the mortgage](image)

 Now compare the graph of the amount of interest with the graph of the amount of principal for each payment.

4. Press **MODE**. Set **Par** and **Simul**.

5. Press **VE**. Turn off all functions and stat plots. Enter these equations and set the graph styles as shown.

 ![Graph equations](image)

 Note: **ΣPrn** and **ΣInt** are located on the **FINANCE** menu (**APPS 1:FINANCE**).

6. Press **WINDOW**. Set these window variables.

 ![Window settings](image)

 Note: To increase the graph speed, change **Tstep** to 24.

7. Press **TRACE**. After the graph is drawn, press **240** **[ENTER]** to move the trace cursor to **T=240**, which is equivalent to 20 years of payments.
The graph shows that for the 240th payment ($X=240$), 358.03 of the 800 payment is applied to principal ($Y=358.03$).

Note: The sum of the payments ($Y_{3T}=Y_{1T}+Y_{2T}$) is always 800.

8. Press $\hat{\text{†}}$ to move the cursor onto the function for interest defined by X_{2T} and Y_{2T}. Enter 240.

The graph shows that for the 240th payment ($X=240$), 441.97 of the 800 payment is interest ($Y=441.97$).

9. Press 2nd [QUIT] [APPS] [ENTER] 9 to paste $9:\text{bal}(t)$ to the home screen. Check the figures from the graph.

At which monthly payment will the principal allocation surpass the interest allocation?
Chapter 18: Memory and Variable Management

Checking Available Memory

MEMORY Menu

At any time you can check available memory or manage existing memory by selecting items from the MEMORY menu. To access this menu, press [2nd] [MEM].

<table>
<thead>
<tr>
<th>MEMORY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: About...</td>
<td>Displays information about the graphing calculator including current OS version number.</td>
</tr>
<tr>
<td>2: Mem Mgmt/Del...</td>
<td>Reports memory availability and variable usage.</td>
</tr>
<tr>
<td>3: Clear Entries</td>
<td>Clears ENTRY (last-entry storage).</td>
</tr>
<tr>
<td>4: ClrAllLists</td>
<td>Clears all lists in memory.</td>
</tr>
<tr>
<td>5: Archive...</td>
<td>Archives a selected variable.</td>
</tr>
<tr>
<td>6: UnArchive...</td>
<td>UnArchives a selected variable.</td>
</tr>
<tr>
<td>7: Reset...</td>
<td>Displays the RAM, ARCHIVE, and ALL menus</td>
</tr>
<tr>
<td>8: Group...</td>
<td>Displays GROUP and UNGROUP menus.</td>
</tr>
</tbody>
</table>

To check memory availability, first press [2nd] [MEM] and then select 2:Mem Mgmt/Del.

Available RAM, Archive, and App Slots

The TI-84 Plus / TI-84 Plus Silver Edition has Archive, RAM, and Application (App) slot memory for you to use and manage. The available RAM stores computations, lists, variables, and data. The available Archive lets you store programs, Apps, groups, and other variables. The App slots are actually individual sectors of Flash ROM where Apps are stored.

<table>
<thead>
<tr>
<th>Graphing calculator</th>
<th>Available RAM</th>
<th>Available Archive</th>
<th>App Slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>TI-84 Plus</td>
<td>24 Kilobytes</td>
<td>491 Kilobytes</td>
<td>30</td>
</tr>
<tr>
<td>TI-84 Plus Silver Edition</td>
<td>24 Kilobytes</td>
<td>1.5 Megabytes</td>
<td>94</td>
</tr>
</tbody>
</table>
Note: Some Apps take up several App slots.

Displaying the About Screen

About displays information about the TI-84 Plus Operating System (OS) Version, Product Number, Product Identification (ID), and Flash Application (App) Certificate Revision Number. To display the About screen, press 2nd [MEM] and then select 1:About.

Displaying the MEMORY MANAGEMENT/DELETE Menu

Mem Mgmt/Del displays the MEMORY MANAGEMENT/DELETE menu. The two lines at the top report the total amount of available RAM (RAM FREE) and Archive (ARC FREE) memory. By selecting menu items on this screen, you can see the amount of memory each variable type is using. This information can help you determine if you need to delete variables from memory to make room for new data, such as programs or Apps.

To check memory usage, follow these steps.

1. Press 2nd [MEM] to display the MEMORY menu.

 ![MEMORY menu]

 Note: The ↑ and ↓ in the top or bottom of the left column indicate that you can scroll up or down to view more variable types.

2. Select 2:Mem Mgmt/Del to display the MEMORY MANAGEMENT/DELETE menu. The TI-84 Plus expresses memory quantities in bytes.
3. Select variable types from the list to display memory usage.

Notes: Real, List, Y-Vars, and Prgm variable types never reset to zero, even after memory is cleared.

Apps are independent applications which are stored in Flash ROM. **AppVars** is a variable holder used to store variables created by Apps. You cannot edit or change variables in **AppVars** unless you do so through the application which created them.

To leave the **MEMORY MANAGEMENT/DELETE** menu, press either 2nd [QUIT] or CLEAR. Both options display the home screen.
Deleting Items from Memory

Deleting an Item

To increase available memory by deleting the contents of any variable (real or complex number, list, matrix, Y= variable, program, Apps, AppVars, picture, graph database, or string), follow these steps.

1. Press 2nd MEM to display the MEMORY menu.
2. Select 2:Mem Mgmt/Del to display the MEMORY MANAGEMENT/DELETE menu.
3. Select the type of data you want to delete, or select 1:All for a list of all variables of all types. A screen is displayed listing each variable of the type you selected and the number of bytes each variable is using.

For example, if you select 4:List, the LIST editor screen is displayed.

4. Press ‡ and † to move the selection cursor (1) next to the item you want to delete, and then press DEL. The variable is deleted from memory. You can delete individual variables one by one from this screen. No warning will be given to verify the deletion.

Note: If you are deleting programs or Apps, you will receive a message asking you to confirm this delete action. Select 2:Yes to continue.

To leave any variable screen without deleting anything, press 2nd QUIT, which displays the home screen.

You cannot delete some system variables, such as the last-answer variable Ans and the statistical variable RegEQ.

Clearing Entries and List Elements

Clear Entries

Clear Entries clears the contents of the ENTRY (last entry on home screen) storage area. To clear the ENTRY storage area, follow these steps.

1. Press 2nd MEM to display the MEMORY menu.
2. Select 3:Clear Entries to paste the instruction to the home screen.
3. Press ENTER to clear the ENTRY storage area.

To cancel Clear Entries, press CLEAR.
Note: If you select 3:Clear Entries from within a program, the Clear Entries instruction is pasted to the program editor, and the Entry (last entry) is cleared when the program is executed.

ClrAllLists

ClrAllLists sets the dimension of each list in RAM to 0.

To clear all elements from all lists, follow these steps.

1. Press [2nd] [MEM] to display the MEMORY menu.
2. Select 4:ClrAllLists to paste the instruction to the home screen.
3. Press [ENTER] to set the dimension of each list in memory to 0.

To cancel ClrAllLists, press [CLEAR].

ClrAllLists does not delete list names from memory, from the LIST NAMES menu, or from the stat list editor.

Note: If you select 4:ClrAllLists from within a program, the ClrAllLists instruction is pasted to the program editor. The lists are cleared when the program is executed.

Archiving and UnArchiving Variables

Archiving and UnArchiving Variables

Archiving lets you store data, programs, or other variables to the user data archive (ARC) where they cannot be edited or deleted inadvertently. Archiving also allows you to free up RAM for variables that may require additional memory.

Archived variables cannot be edited or executed. They can only be seen and unarchived. For example, if you archive list L1, you will see that L1 exists in memory but if you select it and paste the name L1 to the home screen, you won’t be able to see its contents or edit it.

Note: Not all variables may be archived. Not all archived variables may be unarchived. For example, system variables including r, t, x, y, and θ cannot be archived. Apps and Groups always exist in Flash ROM so there is no need to archive them. Groups cannot be unarchived. However, you can ungroup or delete them.

<table>
<thead>
<tr>
<th>Variable Type</th>
<th>Names</th>
<th>Archive? (yes/no)</th>
<th>UnArchive? (yes/no)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real numbers</td>
<td>A, B, ... , Z</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Complex numbers</td>
<td>A, B, ... , Z</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Matrices</td>
<td>[A], [B], [C], ... , [J]</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Archiving and unarchiving can be done in two ways:

- Use the 5:Archive or 6:UnArchive commands from the MEMORY menu or CATALOG.
- Use a Memory Management editor screen.

Before archiving or unarchiving variables, particularly those with a large byte size (such as large programs) use the MEMORY menu to:

- Find the size of the variable.
- See if there is enough free space.

<table>
<thead>
<tr>
<th>Variable Type</th>
<th>Names</th>
<th>Archive? (yes/no)</th>
<th>UnArchive? (yes/no)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lists</td>
<td>L1, L2, L3, L4, L5, L6, and user-defined names</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Programs</td>
<td></td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Functions</td>
<td>Y1, Y2, ..., Y9, Y0</td>
<td>no</td>
<td>not applicable</td>
</tr>
<tr>
<td>Parametric equations</td>
<td>X1T and Y1T, ..., X6T and Y6T</td>
<td>no</td>
<td>not applicable</td>
</tr>
<tr>
<td>Polar functions</td>
<td>r1, r2, r3, r4, r5, r6</td>
<td>no</td>
<td>not applicable</td>
</tr>
<tr>
<td>Sequence functions</td>
<td>u, v, w</td>
<td>no</td>
<td>not applicable</td>
</tr>
<tr>
<td>Stat plots</td>
<td>Plot1, Plot2, Plot3</td>
<td>no</td>
<td>not applicable</td>
</tr>
<tr>
<td>Graph databases</td>
<td>GDB1, GDB2, ...</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Graph pictures</td>
<td>Pic1, Pic2, ..., Pic9, Pic0</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Strings</td>
<td>Str1, Str2, ..., Str9, Str0</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Tables</td>
<td>TblStart, ΔTbl, TblInput</td>
<td>no</td>
<td>not applicable</td>
</tr>
<tr>
<td>Apps</td>
<td>Applications</td>
<td>see Note above</td>
<td>no</td>
</tr>
<tr>
<td>AppVars</td>
<td>Application variables</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Groups</td>
<td></td>
<td>see Note above</td>
<td>no</td>
</tr>
<tr>
<td>Variables with reserved names</td>
<td>minX, maxX, RegEQ, and others</td>
<td>no</td>
<td>not applicable</td>
</tr>
<tr>
<td>System variables</td>
<td>Xmin, Xmax, and others</td>
<td>no</td>
<td>not applicable</td>
</tr>
</tbody>
</table>

Archiving and unarchiving can be done in two ways:

<table>
<thead>
<tr>
<th>For:</th>
<th>Sizes must be such that:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archive</td>
<td>Archive free size > variable size</td>
</tr>
</tbody>
</table>
Note: If there is not enough space, unarchive or delete variables as necessary. Be aware that when you unarchive a variable, not all the memory associated with that variable in user data archive will be released since the system keeps track of where the variable has been and where it is now in RAM.

Even if there appears to be enough free space, you may see a Garbage Collection message when you attempt to archive a variable. Depending on the usability of empty blocks in the user data archive, you may need to unarchive existing variables to create more free space.

To archive or unarchive a list variable (L1) using the Archive/UnArchive options from the MEMORY menu:

1. Press 2nd [MEM] to display the MEMORY menu.

2. Select 5:Archive or 6:UnArchive to place the command in the Home screen.

3. Press 2nd [L1] to place the L1 variable in the Home screen.

4. Press ENTER to complete the archive process.

Note: An asterisk will be displayed to the left of the Archived variable name to indicate it is archived.

To archive or unarchive a list variable (L1) using a Memory Management editor:

1. Press 2nd [MEM] to display the MEMORY menu.

2. Select 2:Mem Mgmt/Del to display the MEMORY MANAGEMENT/DELETE menu.

<table>
<thead>
<tr>
<th>For:</th>
<th>Sizes must be such that:</th>
</tr>
</thead>
<tbody>
<tr>
<td>UnArchive</td>
<td>RAM free size > variable size</td>
</tr>
</tbody>
</table>
3. Select 4:List to display the LIST menu.

4. Press \[\text{ENTER} \] to archive \(L_1 \). An asterisk will appear to the left of \(L_1 \) to indicate it is an archived variable. To unarchive a variable in this screen, put the cursor next to the archived variable and press \[\text{ENTER} \]. The asterisk will disappear.

5. Press 2nd [QUIT] to leave the LIST menu.

Note: You can access an archived variable for the purpose of linking, deleting, or unarchiving it, but you cannot edit it.

Resetting the TI-84 Plus

RAM ARCHIVE ALL Menu

Reset displays the RAM ARCHIVE ALL menu. This menu gives you the option of resetting all memory (including default settings) or resetting selected portions of memory while preserving other data stored in memory, such as programs and \(Y= \) functions. For instance, you can choose to reset all of RAM or just restore the default settings. Be aware that if you choose to reset RAM, all data and programs in RAM will be erased. For archive memory, you can reset variables (Vars), applications (Apps), or both of these. Be aware that if you choose to reset Vars, all data and programs in archive memory will be erased. If you choose to reset Apps, all applications in archive memory will be erased.

When you reset defaults on the TI-84 Plus, all defaults in RAM are restored to the factory settings. Stored data and programs are not changed.

These are some examples of TI-84 Plus defaults that are restored by resetting the defaults:

- Mode settings such as Normal (notation); Func (graphing); Real (numbers); and Full (screen)
- Y= functions off
- Window variable values such as \(X_{\text{min}}= -10, X_{\text{max}}= 10, X_{\text{scl}}= 1, Y_{\text{scl}}= 1, \) and \(X_{\text{res}}= 1 \)
- STAT PLOTS off
- Format settings such as CoordOn (graphing coordinates on); AxesOn; and ExprOn (expression on)
- \(\text{rand} \) seed value to 0

Displaying the RAM ARCHIVE ALL Menu

To display the RAM ARCHIVE ALL menu on the TI-84 Plus, follow these steps.

1. Press \(\text{2nd} [\text{MEM}] \) to display the MEMORY menu.
2. Select 7:Reset to display the RAM ARCHIVE ALL menu.

Resetting RAM Memory

Resetting all RAM restores RAM system variables to factory settings and deletes all nonsystem variables and all programs. Resetting RAM defaults restores all system variables to default settings without deleting variables and programs in RAM. Resetting all RAM or resetting defaults does not affect variables and applications in user data archive.

Note: Before you reset all RAM memory, consider restoring sufficient available memory by deleting only selected data.

To reset all RAM memory or RAM defaults on the TI-84 Plus, follow these steps.

1. From the RAM ARCHIVE ALL menu, select 1:All RAM to display the RESET RAM menu or 2:Defaults to display the RESET DEFAULTS menu.

2. If you are resetting RAM, read the message below the RESET RAM menu.
 - To cancel the reset and return to the HOME screen, press \(\text{ENTER} \).
 - To erase RAM memory or reset defaults, select 2:Reset. Depending on your choice, the message RAM cleared or Defaults set is displayed on the home screen.
Resetting Archive Memory

When resetting archive memory on the TI-84 Plus, you can choose to delete from user data archive all variables, all applications, or both variables and applications.

To reset all or part of user data archive memory, follow these steps.

1. From the RAM ARCHIVE ALL menu, press → to display the ARCHIVE menu.

2. Select one of the following:
 1:Vars to display the RESET ARC VARS menu.
 2:Apps to display the RESET ARC APPS menu.
 3:Both to display the RESET ARC BOTH menu.

3. Read the message below the menu.
 - To cancel the reset and return to the HOME screen, press [ENTER].
 - To continue with the reset, select 2:Reset. A message indicating the type of archive memory cleared will be displayed on the HOME screen.
Reseting All Memory

When resetting all memory on the TI-84 Plus, RAM and user data archive memory is restored to factory settings. All nonsystem variables, applications, and programs are deleted. All system variables are reset to default settings.

Before you reset all memory, consider restoring sufficient available memory by deleting only selected data.

To reset all memory on the TI-84 Plus, follow these steps.

1. From the RAM ARCHIVE ALL menu, press \(\Box \Box \) to display the ALL menu.

2. Select 1:All Memory to display the RESET MEMORY menu.

3. Read the message below the RESET MEMORY menu.
 - To cancel the reset and return to the HOME screen, press \(\text{ENTER} \).
 - To continue with the reset, select 2:Reset. The message MEM cleared is displayed on the HOME screen.

When you clear memory, the contrast sometimes changes. If the screen is faded or blank, adjust the contrast by pressing \(\text{2nd} \Box \Box \) or \(\Box \).

Grouping and Ungrouping Variables

Grouping Variables

Grouping allows you to make a copy of two or more variables residing in RAM and then store them as a group in user data archive. The variables in RAM are not erased. The variables must exist in RAM before they can be grouped. In other words, archived data cannot be included in a group. Once grouped, the variables can be deleted from RAM to open memory. When the variables are needed later, they can be ungrouped for use.

To create a group of variables:

1. Press \(\text{2nd} \text{MEM} \) to display the MEMORY menu.
2. Select 8:Group to display GROUP UNGROUP menu.

3. Press ENTER to display the GROUP menu.

4. Enter a name for the new group and press ENTER.

 Note: A group name can be one to eight characters long. The first character must be a letter from A to Z or θ. The second through eighth characters can be letters, numbers, or θ.

5. Select the type of data you want to group. You can select 1:All+ which shows all variables of all types available and selected. You can also select 2:All- which shows all variables of all types available but not selected. A screen is displayed listing each variable of the type you selected.

 For example, suppose some variables have been created in RAM, and selecting 2:All- displays the following screen.

6. Press ▲ and ▼ to move the selection cursor (▼) next to the first item you want to copy into a group, and then press ENTER. A small square will remain to the left of all variables selected for grouping.
Repeat the selection process until all variables for the new group are selected and then press ~ to display the DONE menu.

7. Press Í to complete the grouping process.

Note: You can only group variables in RAM. You cannot group some system variables, such as the last-answer variable Ans and the statistical variable RegEQ.

Ungrouping Variables

Ungrouping allows you to make a copy of variables in a group stored in user data archive and place them ungrouped in RAM.

DuplicateName Menu

During the ungrouping action, if a duplicate variable name is detected in RAM, the DUPLICATE NAME menu is displayed.

DuplicateName	1: Rename	Prompts to rename receiving variable.
2: Overwrite	Overwrites data in receiving duplicate variable.	
3: Overwrite All	Overwrites data in all receiving duplicate variables.	
4: Omit	Skips ungrouping of sending variable.	
5: Quit	Stops ungrouping at duplicate variable.	

Notes about Menu Items:

- When you select 1:Rename, the Name= prompt is displayed, and alpha-lock is on. Enter a new variable name, and then press Í. Ungrouping resumes.
• When you select 2: **Overwrite**, the unit overwrites the data of the duplicate variable name found in RAM. Ungrouping resumes.

• When you select 3: **Overwrite All**, the unit overwrites the data of all duplicate variable names found in RAM. Ungrouping resumes.

• When you select 4: **Omit**, the unit does not ungroup the variable in conflict with the duplicated variable name found in RAM. Ungrouping resumes with the next item.

• When you select 5: **Quit**, ungrouping stops, and no further changes are made.

To ungroup a group of variables:

1. Press 2nd [MEM] to display the MEMORY menu.

2. Select 8: **Group** to display the GROUP UNGROUP menu.

3. Press 1 to display the UNGROUP menu.

4. Press 4 and 5 to move the selection cursor (>) next to the group variable you want to ungroup, and then press ENTER.

 UnGroupInSt!
 GROUP1

 Done

The ungroup action is completed.

Note: Ungrouping does not remove the group from user data archive. You must delete the group in user data archive to remove it.

Garbage Collection

Garbage Collection Message

If you use the user data archive extensively, you may see a Garbage Collect? message. This occurs if you try to archive a variable when there is not enough free contiguous archive memory.
The Garbage Collect? message lets you know an archive will take longer than usual. It also alerts you that the archive will fail if there is not enough memory.

The message can also alert you when a program is caught in a loop that repetitively fills the user data archive. Select No to cancel the garbage collection process, and then find and correct the errors in your program.

When YES is selected, the TI-84 Plus will attempt to rearrange the archived variables to make additional room.

Responding to the Garbage Collection Message

- To cancel, select 1:No.
- If you select 1:No, the message ERR:ARCHIVE FULL will be displayed.
- To continue archiving, select 2:Yes.
- If you select 2:Yes, the process message Garbage Collecting... or Defragmenting... will be displayed.

Note: The process message Defragmenting... is displayed whenever an application marked for deletion is encountered. Garbage collection may take up to 20 minutes, depending on how much of archive memory has been used to store variables.

After garbage collection, depending on how much additional space is freed, the variable may or may not be archived. If not, you can unarchive some variables and try again.

Why Is Garbage Collection Necessary?

The user data archive is divided into sectors. When you first begin archiving, variables are stored consecutively in sector 1. This continues to the end of the sector.

An archived variable is stored in a continuous block within a single sector. Unlike an application stored in user data archive, an archived variable cannot cross a sector boundary. If there is not enough space left in the sector, the next variable is stored at the beginning of the next sector. Typically, this leaves an empty block at the end of the previous sector.

Depending on its size, variable D is stored in one of these locations.
Each variable that you archive is stored in the first empty block large enough to hold it.

This process continues to the end of the last sector. Depending on the size of individual variables, the empty blocks may account for a significant amount of space. Garbage collection occurs when the variable you are archiving is larger than any empty block.

How Unarchiving a Variable Affects the Process

When you unarchive a variable, it is copied to RAM but it is not actually deleted from user data archive memory. Unarchived variables are "marked for deletion," meaning they will be deleted during the next garbage collection.

If the MEMORY Screen Shows Enough Free Space

Even if the MEMORY screen shows enough free space to archive a variable or store an application, you may still get a Garbage Collect? message or an ERR: ARCHIVE FULL message.

When you unarchive a variable, the Archive free amount increases immediately, but the space is not actually available until after the next garbage collection.

If the Archive free amount shows enough available space for your variable, there probably will be enough space to archive it after garbage collection (depending on the usability of any empty blocks).

The Garbage Collection Process

The garbage collection process:

- Deletes unarchived variables from the user data archive.
- Rearranges the remaining variables into consecutive blocks.
Note: Power loss during garbage collection may cause all memory (RAM and Archive) to be deleted.

Using the GarbageCollect Command

You can reduce the number of automatic garbage collections by periodically optimizing memory. This is done by using the GarbageCollect command.

To use the GarbageCollect command, follow these steps.

1. From the HOME screen, press 2nd [CATALOG] to display the CATALOG.

2. Press † or ‡ to scroll the CATALOG until the selection cursor points to the GarbageCollect command or press G to skip to the commands starting with the letter G.

3. Press ENTER to paste the command to the HOME screen.

4. Press ENTER to display the Garbage Collect? message.

5. Select 2:Yes to begin garbage collection.
ERR:ARCHIVE FULL Message

Even if the MEMORY screen shows enough free space to archive a variable or store an application, you may still get an ERR: ARCHIVE FULL message.

An ERR:ARCHIVE FULL message may be displayed:

- When there is insufficient space to archive a variable within a continuous block and within a single sector.
- When there is insufficient space to store an application within a continuous block of memory.

When the message is displayed, it will indicate the largest single space of memory available for storing a variable and an application.

To resolve the problem, use the GarbageCollect command to optimize memory. If memory is still insufficient, you must delete variables or applications to increase space.
Chapter 19: Communication Link

Getting Started: Sending Variables

Getting Started is a fast-paced introduction. Read the chapter for details.

Create and store a variable and a matrix, and then transfer them to another TI-84 Plus.

1. On the home screen of the sending unit, press 5 ENTER ALPHA Q. Press ENTER to store 5.5 to Q.

2. Press ALPHA [3] [→] [ENTER] to display the 2x2 matrix template. Press 1 2 3 4 5 6 to enter the values. Press STO→ 2nd [MATRIX] 1 [ENTER] to store the matrix to [A].

3. On the sending unit, press 2nd [MEM] to display the MEMORY menu.

4. On the sending unit, press 2 to select 2:Mem Mgmt/Del. The MEMORY MANAGEMENT menu is displayed.

5. On the sending unit, press 5 to select 5:Matrix. The MATRIX editor screen is displayed.

6. On the sending unit, press ENTER to archive [A]. An asterisk (*) will appear, signifying that [A] is now archived.

7. Connect the graphing calculators with the USB unit-to-unit cable. Push both ends in firmly.

8. On the receiving unit, press 2nd [LINK] [→] to display the RECEIVE menu. Press 1 to select 1:Receive. The message Waiting... is displayed and the busy indicator is on.
Chapter 19: Communication Link

9. On the sending unit, press 2nd [LINK] to display the SEND menu.

10. Press 2 to select 2:All→. The All→ SELECT screen is displayed.

11. Press ▶ until the selection cursor (▼) is next to [A] MATRIX. Press [ENTER].

12. Press ▶ until the selection cursor is next to Q REAL. Press [ENTER]. A square dot next to [A] and Q indicates that each is selected to send.

13. On the sending unit, press [吸毒] to display the TRANSMIT menu.

14. On the sending unit, press 1 to select 1:Transmit and begin transmission. The receiving unit displays the message Receiving... When the items are transmitted, both units display the name and type of each transmitted variable.

TI-84 Plus LINK

This chapter describes how to communicate with compatible TI units. The TI-84 Plus has a USB port to connect and communicate with another TI-84 series calculator. A USB unit-to-unit cable is included with the TI-84 Plus.

The TI-84 Plus also has an I/O port using a I/O unit-to-unit cable to communicate with:

- TI-83 Plus Silver Edition
- TI-82
- TI-83 Plus
- TI-73
- TI-83
- CBL 2™ or a CBR™

You can send items from a calculator with an older OS to a calculator with OS 2.53MP and higher. However, you may receive a version error if you send items from a calculator with OS 2.53MP or higher to a calculator with an older OS. Transferring files between calculators works best if both calculators have the latest operating system software installed. For example, if you send a list that contains fractions (OS 2.53MP and higher) to a calculator with OS 2.43, a version error displays because OS 2.43 does not support fractions.
Connecting Two Graphing Calculators with a USB Unit-to-Unit Cable or an I/O Unit-to-Unit Cable

USB Unit-to-Unit Cable

The TI-84 Plus USB link port is located at the top right edge of the graphing calculator.

1. Firmly insert either end of the USB unit-to-unit cable into the USB port.
2. Insert the other end of the cable into the other graphing calculator’s USB port.

I/O Unit-to-Unit Cable

The TI-84 Plus I/O link port is located at the top left edge of the graphing calculator.

1. Firmly insert either end of the I/O unit-to-unit cable into the port.
2. Insert the other end of the cable into the other graphing calculator’s I/O port.

TI-84 Plus to a TI-83 Plus using I/O Unit-to-Unit Cable

The TI-84 Plus I/O link port is located at the top left edge of the graphing calculator. The TI-83 Plus I/O link port is located at the bottom edge of the graphing calculator.

1. Firmly insert either end of the I/O unit-to-unit cable into the port.
2. Insert the other end of the cable into the other graphing calculator’s I/O port.

Linking to the CBL/CBR System

The CBL 2™ system and the CBR™ system are optional accessories that also connect to a TI-84 Plus with the I/O unit-to-unit cable. With a CBL 2™ system or CBR™ system and a TI-84 Plus, you can collect and analyze real-world data.

Linking to a Computer

With TI Connect™ software and the USB computer cable that is included with your TI-84 Plus, you can link the graphing calculator to a personal computer.
Selecting Items to Send

LINK SEND Menu

To display the LINK SEND menu, press [2nd] [LINK].

<table>
<thead>
<tr>
<th>SEND</th>
<th>RECEIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>All+... Displays all items as selected, including RAM and Flash applications.</td>
</tr>
<tr>
<td>2:</td>
<td>All-... Displays all items as deselected.</td>
</tr>
<tr>
<td>3:</td>
<td>Prgm... Displays all program names.</td>
</tr>
<tr>
<td>4:</td>
<td>List... Displays all list names.</td>
</tr>
<tr>
<td>5:</td>
<td>Lists to TI82... Displays list names L1 through L6.</td>
</tr>
<tr>
<td>6:</td>
<td>GDB... Displays all graph databases.</td>
</tr>
<tr>
<td>7:</td>
<td>Pic... Displays all picture data types.</td>
</tr>
<tr>
<td>8:</td>
<td>Matrix... Displays all matrix data types.</td>
</tr>
<tr>
<td>9:</td>
<td>Real... Displays all real variables.</td>
</tr>
<tr>
<td>0:</td>
<td>Complex... Displays all complex variables.</td>
</tr>
<tr>
<td>A:</td>
<td>Y-Vars... Displays all Y= variables.</td>
</tr>
<tr>
<td>B:</td>
<td>String... Displays all string variables.</td>
</tr>
<tr>
<td>C:</td>
<td>Apps... Displays all software applications.</td>
</tr>
<tr>
<td>D:</td>
<td>AppVars... Displays all software application variables.</td>
</tr>
<tr>
<td>E:</td>
<td>Group... Displays all grouped variables.</td>
</tr>
<tr>
<td>F:</td>
<td>SendId Sends the Calculator ID number immediately. (You do not need to select SEND.)</td>
</tr>
<tr>
<td>G:</td>
<td>SendOS Sends operating system updates to another TI-84 Plus Silver Edition or TI-84 Plus. You cannot send the operating system to the TI-83 Plus product family.</td>
</tr>
<tr>
<td>H:</td>
<td>Back Up... Selects all RAM and mode settings (no Flash applications or archived items) for backup to another TI-84 Plus, TI-84 Plus Silver Edition, TI-83 Plus Silver Edition, or to a TI-83 Plus.</td>
</tr>
</tbody>
</table>

When you select an item on the LINK SEND menu, the corresponding SELECT screen is displayed.

Note: Each SELECT screen, except All+..., is initially displayed with nothing pre-selected. All+... is displayed with everything pre-selected.

To select items to send:

1. Press [2nd] [LINK] on the sending unit to display the LINK SEND menu.
2. Select the menu item that describes the data type to send. The corresponding SELECT screen is displayed.

3. Press △ and † to move the selection cursor (↑) to an item you want to select or deselect.

4. Press ENTER to select or deselect the item. Selected names are marked with a ■.

Note: An asterisk (*) to the left of an item indicates the item is archived.

5. Repeat steps 3 and 4 to select or deselect additional items.

Sending the Selected Items

After you have selected items to send on the sending unit and set the receiving unit to receive, follow these steps to transmit the items. To set the receiving unit, see Receiving Items.

1. Press ~ on the sending unit to display the TRANSMIT menu.

2. Confirm that Waiting... is displayed on the receiving unit, which indicates it is set to receive.

3. Press ENTER to select 1:Transmit. The name and type of each item are displayed line-by-line on the sending unit as the item is queued for transmission, and then on the receiving unit as each item is accepted.

Note: Items sent from the RAM of the sending unit are transmitted to the RAM of the receiving unit. Items sent from user data archive (flash) of the sending unit are transmitted to user data archive (flash) of the receiving unit.

After all selected items have been transmitted, the message Done is displayed on both calculators. Press △ and † to scroll through the names.

Sending to a TI-84 Plus Silver Edition or TI-84 Plus

You can transfer variables (all types), programs, and Flash applications to another TI-84 Plus Silver Edition or TI-84 Plus. You can also backup the RAM memory of one unit to another.

Note: Keep in mind that the TI-84 Plus has less Flash memory than the TI-84 Plus Silver Edition.
• Variables stored in RAM on the sending TI-84 Plus Silver Edition will be sent to the RAM of the receiving TI-84 Plus Silver Edition or TI-84 Plus.

• Variables and applications stored in the user data archive of the sending TI-84 Plus Silver Edition will be sent to the user data archive of the receiving TI-84 Plus Silver Edition or TI-84 Plus.

After sending or receiving data, you can repeat the same transmission to additional TI-84 Plus Silver Edition or TI-84 Plus units—from either the sending unit or the receiving unit—without having to reselect data to send. The current items remain selected. However, you cannot repeat transmission if you selected All+ or All–.

To send data to an additional TI-84 Plus Silver Edition or a TI-84 Plus:

1. Use a USB unit-to-unit cable to link two units together.
2. On the sending unit press \(y \ 8 \) and select a data type and items to SEND.
3. Press \(\mathbf{x} \) on the sending unit to display the TRANSMIT menu.
4. On the other unit, press \(y \ 8 \ \mathbf{~} \) to display the RECEIVE menu.
5. Press \(\mathbf{\downarrow} \) on the receiving unit.
6. Press \(\mathbf{\downarrow} \) on the sending unit. A copy of the selected item(s) is sent to the receiving unit.
7. Disconnect the link cable only from the receiving unit and connect it to another unit.
8. Press \(\mathbf{2nd} \ [\text{LINK}] \) on the sending unit.
9. Select only the data type. For example, if the unit just sent a list, select 4:LIST.

 Note: The item(s) you want to send are pre-selected from the last transmission. Do not select or deselect any items. If you select or deselect an item, all selections or deselections from the last transmission are cleared.
10. Press \(\mathbf{x} \) on the sending unit to display the TRANSMIT menu.
11. On the new receiving unit, press \(\mathbf{2nd} \ [\text{LINK}] \ \mathbf{~} \) to display the RECEIVE menu.
12. Press \(\mathbf{\downarrow} \) on the receiving unit.
13. Press \(\mathbf{\downarrow} \) on the sending unit. A copy of the selected item(s) is sent to the receiving unit.
14. Repeat steps 7 through 13 until the items are sent to all additional units.

Sending to a TI-83 Plus or TI-83 Plus Silver Edition

You can send all variables from a TI-84 Plus to a TI-83 Plus or TI-83 Plus Silver Edition except Flash applications with new features, or programs with new features in them.

If archived variables on the TI-84 Plus are variable types recognized and used on the TI-83 Plus or TI-83 Plus Silver Edition, you can send these variables to the TI-83 Plus or TI-83 Plus Silver Edition. They will be automatically sent to the RAM of the TI-83 Plus or TI-83 Plus Silver Edition during the transfer process. It will send to archive if the item is from archive.

To send data to a TI-83 Plus or TI-83 Plus Silver Edition:

1. Use an I/O unit-to-unit cable to link the two units together.
2. Set the TI-83 Plus or TI-83 Plus Silver Edition to receive.
3. Press 2nd [LINK] on the sending TI-84 Plus to display the LINK SEND menu.
4. Select the menu of the items you want to transmit.
5. Press on the sending TI-84 Plus to display the LINK TRANSMIT menu.
6. Confirm that the receiving unit is set to receive.
7. Press ENTER on the sending TI-84 Plus to select 1:Transmit and begin transmitting.

Receiving Items

LINK RECEIVE Menu

To display the LINK RECEIVE menu, press 2nd [LINK] .

<table>
<thead>
<tr>
<th>SEND</th>
<th>RECEIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Receive</td>
<td>Sets unit to receive data transmission.</td>
</tr>
</tbody>
</table>

Receiving Unit

When you select 1:Receive from the LINK RECEIVE menu on the receiving unit, the message Waiting... and the busy indicator are displayed. The receiving unit is ready to receive transmitted items. To exit the receive mode without receiving items, press ON, and then select 1:Quit from the Error in Xmit menu.

When transmission is complete, the unit exits the receive mode. You can select 1:Receive again to receive more items. The receiving unit then displays a list of items received. Press 2nd [QUIT] to exit the receive mode.

DuplicateName Menu

During transmission, if a variable name is duplicated, the DuplicateName menu is displayed on the receiving unit.

<table>
<thead>
<tr>
<th>DuplicateName</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Rename</td>
</tr>
<tr>
<td>2: Overwrite</td>
</tr>
<tr>
<td>3: Omit</td>
</tr>
<tr>
<td>4: Quit</td>
</tr>
</tbody>
</table>

When you select 1:Rename, the Name= prompt is displayed, and alpha-lock is on. Enter a new variable name, and then press ENTER. Transmission resumes.

When you select 2:Overwrite, the sending unit’s data overwrites the existing data stored on the receiving unit. Transmission resumes.
When you select 3:Omit, the sending unit does not send the data in the duplicated variable name. Transmission resumes with the next item.

When you select 4:Quit, transmission stops, and the receiving unit exits receive mode.

Receiving from a TI-84 Plus Silver Edition or TI-84 Plus

The TI-84 Plus Silver Edition and the TI-84 Plus are totally compatible. Keep in mind, however that the TI-84 Plus has less Flash memory than a TI-84 Plus Silver Edition.

You cannot send memory backups between the TI-84 Plus product family and the TI-83 Plus product family.

Receiving from a TI-83 Plus Silver Edition or TI-83 Plus

The TI-84 Plus product family and the TI-83 Plus product family are compatible with a few exceptions.

Receiving from a TI-83

You can transfer all variables and programs from a TI-83 to a TI-84 Plus if they fit in the RAM of the TI-84 Plus. The RAM of the TI-84 Plus is slightly less than the RAM of the TI-83.

Backing Up RAM Memory

Warning: H:Back Up overwrites the RAM memory and mode settings in the receiving unit. All information in the RAM memory of the receiving unit is lost.

Note: Archived items on the receiving unit are not overwritten.

You can backup the contents of RAM memory and mode settings (no Flash applications or archived items) to another TI-84 Plus Silver Edition. You can also backup RAM memory and mode settings to a TI-84 Plus. The backup calculator must also have OS 2.55MP installed.

To perform a RAM memory backup:

1. Use a USB unit-to-unit cable to link two TI-84 Plus units, or a TI-84 Plus and a TI-84 Plus Silver Edition together.
2. On the sending unit press 2nd [LINK] and select H:Back Up. The MEMORYBACKUP screen displays.
3. On the receiving unit, press 2nd [LINK] 1 to display the RECEIVE menu.
4. Press ENTER on the receiving unit.
5. Press enter on the sending unit. A WARNING — Backup message displays on the receiving unit.

6. Press enter on the receiving unit to continue the backup.
 — or —
 Press 2:Quit on the receiving unit to cancel the backup and return to the LINK SEND menu.
 Note: If a transmission error is returned during a backup, the receiving unit is reset.

Memory Backup Complete

When the backup is complete, both the sending graphing calculator and receiving graphing calculator display a confirmation screen.

ERROR
Done

Error Conditions

A transmission error occurs after one or two seconds if:

- A cable is not attached to the sending unit.
- A cable is not attached to the receiving unit.
 Note: If the cable is attached, push it in firmly and try again.
- The receiving unit is not set to receive transmission.
- You attempt a backup between a TI-73, TI-82, TI-83, TI-83 Plus, or TI-83 Plus Silver Edition.
- You attempt a data transfer from a TI-84 Plus to a TI-82 with data other than real lists L1 through L6 or without using menu item 5:Lists to TI82.
- You attempt a data transfer from a TI-84 Plus to a TI-73 with data other than real numbers, pics, real lists L1 through L6 or named lists with θ as part of the name.

Although a transmission error does not occur, these two conditions may prevent successful transmission.

- You try to use Get(with a graphing calculator instead of a CBL 2™ system or CBR™ system.
- You try to use GetCalc(with a TI-83 instead of a TI-84 Plus or TI-84 Plus Silver Edition.
Insufficient Memory in Receiving Unit

- During transmission, if the receiving unit does not have sufficient memory to receive an item, the Memory Full menu is displayed on the receiving unit.
- To skip this item for the current transmission, select 1:Omit. Transmission resumes with the next item.
- To cancel the transmission and exit receive mode, select 2:Quit.
Appendix A: Functions and Instructions

Functions return a value, list, or matrix. You can use functions in an expression. Instructions initiate an action. Some functions and instructions have arguments. Optional arguments and accompanying commas are enclosed in brackets ([]). For details about an item, including argument descriptions and restrictions, turn to the page listed on the right side of the table.

From the **CATALOG**, you can paste any function or instruction to the home screen or to a command line in the program editor. However, some functions and instructions are not valid on the home screen. The items in this table appear in the same order as they appear in the **CATALOG**.

† indicates either keystrokes that are valid in the program editor only or ones that paste certain instructions when you are in the program editor. Some keystrokes display menus that are available only in the program editor. Others paste mode, format, or table-set instructions only when you are in the program editor.

<table>
<thead>
<tr>
<th>Function or Instruction/Arguments</th>
<th>Result</th>
<th>Key or Keys/Menu or Screen/Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs(value)</td>
<td>Returns the absolute value of a real number, expression, list, or matrix.</td>
<td>MATH NUM 1:abs(</td>
</tr>
<tr>
<td>abs(complex value)</td>
<td>Returns the magnitude of a complex number or list.</td>
<td>MATH CPX 5:abs(</td>
</tr>
<tr>
<td>valueA and valueB</td>
<td>Returns 1 if both valueA and valueB are ≠ 0. valueA and valueB can be real numbers, expressions, or lists.</td>
<td>2nd [TEST] LOGIC 1:and</td>
</tr>
<tr>
<td>angle(value)</td>
<td>Returns the polar angle of a complex number or list of complex numbers.</td>
<td>MATH CPX 4:angle(</td>
</tr>
<tr>
<td>ANOVA(list1, list2, [list3,...,list20])</td>
<td>Performs a one-way analysis of variance for comparing the means of two to 20 populations.</td>
<td>STAT TESTS H:ANOVA(</td>
</tr>
<tr>
<td>Ans</td>
<td>Returns the last answer.</td>
<td>2nd [ANS]</td>
</tr>
<tr>
<td>Archive</td>
<td>Moves the specified variables from RAM to the user data archive memory.</td>
<td>2nd [MEM] 5:Archive</td>
</tr>
<tr>
<td>Asm(assemblyprgmname)</td>
<td>Executes an assembly language program.</td>
<td>2nd [CATALOG] Asm(</td>
</tr>
<tr>
<td>AsmComp(prgmASM1, prgmASM2)</td>
<td>Compiles an assembly language program written in ASCII and stores the hex version.</td>
<td>2nd [CATALOG] AsmComp(</td>
</tr>
<tr>
<td>AsmPrgm</td>
<td>Must be used as the first line of an assembly language program.</td>
<td>2nd [CATALOG] AsmPrgm</td>
</tr>
<tr>
<td>augment(matrixA, matrixB)</td>
<td>Returns a matrix, which is matrixB appended to matrixA as new columns.</td>
<td>2nd [MATRIX] MATH 7:augment(</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>augment(listA,listB)</td>
<td>Returns a list, which is listB concatenated to the end of listA.</td>
<td>2nd LIST | OPS 9:augment()</td>
</tr>
<tr>
<td>AUTO Answer</td>
<td>Displays answers in a similar format as the input.</td>
<td>MODE: Answers: AUTO</td>
</tr>
<tr>
<td>AxesOff</td>
<td>Turns off the graph axes.</td>
<td>† 2nd [FORMAT] AxesOff</td>
</tr>
<tr>
<td>AxesOn</td>
<td>Turns on the graph axes.</td>
<td>† 2nd [FORMAT] AxesOn</td>
</tr>
<tr>
<td>a+bi</td>
<td>Sets the mode to rectangular complex number mode (a+bi).</td>
<td>† MODE a+bi</td>
</tr>
<tr>
<td>bal(npmt,roundvalue)</td>
<td>Computes the balance at npmt for an amortization schedule using stored values for PV, I%, and PMT and rounds the computation to roundvalue.</td>
<td>APPS: 1:Finance CALC 9:bal()</td>
</tr>
<tr>
<td>binomcdf(numtrials,p [,x])</td>
<td>Computes a cumulative probability at x for the discrete binomial distribution with the specified numtrials and probability p of success on each trial.</td>
<td>2nd [DISTR] DISTR B:binomcdf()</td>
</tr>
<tr>
<td>binompdf(numtrials,p [,x])</td>
<td>Computes a probability at x for the discrete binomial distribution with the specified numtrials and probability p of success on each trial.</td>
<td>2nd [DISTR] DISTR A:binompdf()</td>
</tr>
<tr>
<td>checkTmr(starttime)</td>
<td>Returns the number of seconds since you used startTmr to start the timer. The starttime is the value displayed by startTmr.</td>
<td>2nd [CATALOG] checkTmr()</td>
</tr>
<tr>
<td>χ²cdf(lowerbound, upperbound,df)</td>
<td>Computes the χ² distribution probability between lowerbound and upperbound for the specified degrees of freedom df.</td>
<td>2nd [DISTR] DISTR 8:χ²cdf()</td>
</tr>
<tr>
<td>χ²pdf(x,df)</td>
<td>Computes the probability density function (pdf) for the χ² distribution at a specified x value for the specified degrees of freedom df.</td>
<td>2nd [DISTR] DISTR 7:χ²pdf()</td>
</tr>
<tr>
<td>χ²-Test(observedmatrix, expectedmatrix [,drawflag])</td>
<td>Performs a chi-square test. drawflag=1 draws results; drawflag=0 calculates results.</td>
<td>† STAT TESTS C:χ²-Test()</td>
</tr>
<tr>
<td>χ²GOF-Test(observedlist, expectedlist,df)</td>
<td>Performs a test to confirm that sample data is from a population that conforms to a specified distribution.</td>
<td>† STAT TESTS D:χ²GOF-Test()</td>
</tr>
<tr>
<td>Circle(X,Y, radius)</td>
<td>Draws a circle with center (X,Y) and radius.</td>
<td>2nd [DRAW] DRAW 9:Circle()</td>
</tr>
<tr>
<td>CLASSIC</td>
<td>Displays inputs and outputs on a single line, such as 1/2+3/4.</td>
<td>MODE CLASSIC</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Clear Entries</td>
<td>Clears the contents of the Last Entry storage area.</td>
<td>2nd [MEM] MEMORY 3:Clear Entries</td>
</tr>
<tr>
<td>ClockOff</td>
<td>Turns off the clock display in the mode screen.</td>
<td>2nd [CATALOG] ClockOff</td>
</tr>
<tr>
<td>ClockOn</td>
<td>Turns on the clock display in the mode screen.</td>
<td>2nd [CATALOG] ClockOn</td>
</tr>
<tr>
<td>ClrAllLists</td>
<td>Sets to 0 the dimension of all lists in memory.</td>
<td>2nd [MEM] MEMORY 4:ClrAllLists</td>
</tr>
<tr>
<td>ClrDraw</td>
<td>Clears all drawn elements from a graph or drawing.</td>
<td>2nd [DRAW] DRAW 1:ClrDraw</td>
</tr>
<tr>
<td>ClrHome</td>
<td>Clears the home screen.</td>
<td>† [PRGM] I/O 8:ClrHome</td>
</tr>
<tr>
<td>ClrList</td>
<td>Sets to 0 the dimension of one or more listnames.</td>
<td>STAT EDIT 4:ClrList</td>
</tr>
<tr>
<td>ClrTable</td>
<td>Clears all values from the table.</td>
<td>† [PRGM] I/O 9:ClrTable</td>
</tr>
<tr>
<td>conj(value)</td>
<td>Returns the complex conjugate of a complex number or list of complex numbers.</td>
<td>MATH CPX 1:conj(</td>
</tr>
<tr>
<td>Connected</td>
<td>Sets connected plotting mode; resets all Y= editor graph-style settings to .</td>
<td>† [MODE] Connected</td>
</tr>
<tr>
<td>CoordOff</td>
<td>Turns off cursor coordinate value display.</td>
<td>† 2nd [FORMAT] CoordOff</td>
</tr>
<tr>
<td>CoordOn</td>
<td>Turns on cursor coordinate value display.</td>
<td>† 2nd [FORMAT] CoordOn</td>
</tr>
<tr>
<td>cos(value)</td>
<td>Returns cosine of a real number, expression, or list.</td>
<td>COS</td>
</tr>
<tr>
<td>cos⁻¹(value)</td>
<td>Returns arccosine of a real number, expression, or list.</td>
<td>2nd [COS⁻¹]</td>
</tr>
<tr>
<td>cosh(value)</td>
<td>Returns hyperbolic cosine of a real number, expression, or list.</td>
<td>2nd [CATALOG] cosh(</td>
</tr>
<tr>
<td>cosh⁻¹(value)</td>
<td>Returns hyperbolic arccosine of a real number, expression, or list.</td>
<td>2nd [CATALOG] cosh⁻¹(</td>
</tr>
<tr>
<td>CubicReg</td>
<td>Fits a cubic regression model to (X\text{listname}) and (Y\text{listname}) with frequency (freq\text{list}), and stores the regression equation to (regequ).</td>
<td>STAT CALC 6:CubicReg</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>cumSum(list)</td>
<td>Returns a list of the cumulative sums of the elements in list, starting with the first element.</td>
<td>2nd [LIST] OPS 6:cumSum(</td>
</tr>
<tr>
<td>cumSum(matrix)</td>
<td>Returns a matrix of the cumulative sums of matrix elements. Each element in the returned matrix is a cumulative sum of a matrix column from top to bottom.</td>
<td>2nd [MATRIX] MATH 0:cumSum(</td>
</tr>
<tr>
<td>dayOfWk(year, month, day)</td>
<td>Returns an integer from 1 to 7, with each integer representing a day of the week. Use dayOfWk to determine on which day of the week a particular date would occur. The year must be 4 digits; month and day can be 1 or 2 digit.</td>
<td>2nd [CATALOG] dayOfWk(1:Sunday 2:Monday 3:Tuesday...</td>
</tr>
<tr>
<td>dbd(date1, date2)</td>
<td>Calculates the number of days between date1 and date2 using the actual-day-count method.</td>
<td>APPS 1:Finance CALC D:dbd(</td>
</tr>
<tr>
<td>DEC Answers</td>
<td>Displays answers as integers or decimal numbers.</td>
<td>MODE Answers: DEC</td>
</tr>
<tr>
<td>value→Dec</td>
<td>Displays a real or complex number, expression, list, or matrix in decimal format.</td>
<td>MATH MATH 2:→Dec</td>
</tr>
<tr>
<td>Degree</td>
<td>Sets degree angle mode.</td>
<td>+ [MODE] Degree</td>
</tr>
<tr>
<td>DelVar variable</td>
<td>Deletes from memory the contents of variable.</td>
<td>+ [PRGM] CTL G:DelVar</td>
</tr>
<tr>
<td>DependAsk</td>
<td>Sets table to ask for dependent-variable values.</td>
<td>+ 2nd [TBLSET] Depend: Ask</td>
</tr>
<tr>
<td>DependAuto</td>
<td>Sets table to generate dependent-variable values automatically.</td>
<td>+ 2nd [TBLSET] Depend: Auto</td>
</tr>
<tr>
<td>det(matrix)</td>
<td>Returns determinant of matrix.</td>
<td>2nd [MATRIX] MATH 1:det(</td>
</tr>
<tr>
<td>DiagnosticOff</td>
<td>Sets diagnostics-off mode; r, r², and R² are not displayed as regression model results.</td>
<td>2nd [CATALOG] DiagnosticOff</td>
</tr>
<tr>
<td>DiagnosticOn</td>
<td>Sets diagnostics-on mode; r, r², and R² are displayed as regression model results.</td>
<td>2nd [CATALOG] DiagnosticOn</td>
</tr>
<tr>
<td>dim(listname)</td>
<td>Returns the dimension of listname.</td>
<td>2nd [LIST] OPS 3:dim(</td>
</tr>
<tr>
<td>dim(matrixname)</td>
<td>Returns the dimension of matrixname as a list.</td>
<td>2nd [MATRIX] MATH 3:dim(</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>--------------------------------</td>
</tr>
</tbody>
</table>
| `length→dim(listname)` | Assigns a new dimension (`length`) to a new or existing listname. | 2nd [LIST]
OP3
3:dim(|
| `{rows,columns}`→dim(matrixname) | Assigns new dimensions to a new or existing matrixname. | 2nd [MATRIX]
MATH
3:dim(|
| Disp | Displays the home screen. | † PRGM
I/O
3:Disp |
| Disp [valueA,valueB, valueC,...,value n] | Displays each value. | † PRGM
I/O
3:Disp |
| DispGraph | Displays the graph. | † PRGM
I/O
4:DispGraph |
| DispTable | Displays the table. | † PRGM
I/O
5:DispTable |
| value→DMS | Displays value in DMS format. | 2nd [ANGLE]
ANGLE
4→DMS |
| Dot | Sets dot plotting mode; resets all Y= editor graph-style settings to ‘.’. | † MODE
Dot |
| DrawF expression | Draws expression (in terms of X) on the graph. | 2nd [DRAW]
DRAW
6:DrawF |
| DrawInv expression | Draws the inverse of expression by plotting X values on the y-axis and Y values on the x-axis. | 2nd [DRAW]
DRAW
8:DrawInv |
| :DS<(variable, value)
:commandA
:commands | Decrements variable by 1; skips commandA if variable < value. | † PRGM
CTL
B:DS<(|
<p>| e | Returns e. | 2nd [e] |
| e^(power) | Returns e raised to power. | 2nd [e^x] |
| e^(list) | Returns a list of e raised to a list of powers. | 2nd [e^x] |
| Exponent: value^exponent | Returns value times 10 to the exponent. | 2nd [EE] |
| Exponent: list^exponent | Returns list elements times 10 to the exponent. | 2nd [EE] |
| Exponent: matrix^exponent | Returns matrix elements times 10 to the exponent. | 2nd [EE] |</p>
<table>
<thead>
<tr>
<th>Function or Instruction/Arguments</th>
<th>Result</th>
<th>Key or Keys/Menu or Screen/Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eff(nominal rate, compounding periods)</td>
<td>Computes the effective interest rate.</td>
<td>APPS 1:Finance CALC C:Eff(</td>
</tr>
<tr>
<td>Else</td>
<td>See If:Then:Else</td>
<td></td>
</tr>
<tr>
<td>End</td>
<td>Identifies end of For, If:Then:Else, Repeat, or While loop.</td>
<td>† PRGM CTL 7:End</td>
</tr>
<tr>
<td>Eng</td>
<td>Sets engineering display mode.</td>
<td>† MODE Eng</td>
</tr>
<tr>
<td>Equ String(Y= var, Strn)</td>
<td>Converts the contents of a Y= var to a string and stores it in Strn.</td>
<td>2nd [CATALOG] Equ String(</td>
</tr>
<tr>
<td>expr(string)</td>
<td>Converts string to an expression and executes it.</td>
<td>2nd [CATALOG] expr(</td>
</tr>
<tr>
<td>ExpReg [Xlistname, Ylistname, freqlist, regequ]</td>
<td>Fits an exponential regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ.</td>
<td>STAT CALC 0:ExpReg</td>
</tr>
<tr>
<td>ExprOff</td>
<td>Turns off the expression display during TRACE.</td>
<td>† 2nd [FORMAT] ExprOff</td>
</tr>
<tr>
<td>ExprOn</td>
<td>Turns on the expression display during TRACE.</td>
<td>† 2nd [FORMAT] ExprOn</td>
</tr>
<tr>
<td>F cdff(lowerbound, upperbound, numerator df, denominator df)</td>
<td>Computes the F distribution probability between lowerbound and upperbound for the specified numerator df (degrees of freedom) and denominator df.</td>
<td>2nd [DISTR] DISTR 0:F cdff(</td>
</tr>
<tr>
<td>F ➪ D</td>
<td>Converts an answer from a fraction to a decimal or from a decimal to a fraction.</td>
<td>ALPHA [F1] 4: ➪ D or MATH NUM 8: ➪ D</td>
</tr>
<tr>
<td>Fill(value, matrixname)</td>
<td>Stores value to each element in matrixname.</td>
<td>2nd [MATRIX] MATH 4:Fill(</td>
</tr>
<tr>
<td>Fill(value, listname)</td>
<td>Stores value to each element in listname.</td>
<td>2nd [LIST] OPS 4:Fill(</td>
</tr>
<tr>
<td>Fix #</td>
<td>Sets fixed-decimal mode for # of decimal places.</td>
<td>† MODE 0123456789 (select one)</td>
</tr>
<tr>
<td>Float</td>
<td>Sets floating decimal mode.</td>
<td>† MODE Float</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>fMax(expression, variable, lower, upper[,tolerance])</td>
<td>Returns the value of variable where the local maximum of expression occurs, between lower and upper, with specified tolerance.</td>
<td>MATH 7: fMax()</td>
</tr>
<tr>
<td>fMin(expression, variable, lower, upper[,tolerance])</td>
<td>Returns the value of variable where the local minimum of expression occurs, between lower and upper, with specified tolerance.</td>
<td>MATH 6: fMin()</td>
</tr>
<tr>
<td>fnInt(expression, variable, lower, upper[,tolerance])</td>
<td>Returns the function integral of expression with respect to variable, between lower and upper, with specified tolerance.</td>
<td>MATH 9: fnInt()</td>
</tr>
<tr>
<td>FnOff [function#, function#, ... function n]</td>
<td>Deselects all Y= functions or specified Y= functions.</td>
<td>Y-VARS 4: On/Off 2: FnOff</td>
</tr>
<tr>
<td>FnOn [function#, function#, ... function n]</td>
<td>Selects all Y= functions or specified Y= functions.</td>
<td>Y-VARS 4: On/Off 1: FnOn</td>
</tr>
<tr>
<td>:For(variable, begin, end[,increment]) :End: commands</td>
<td>Executes commands through End, incrementing variable from begin by increment until variable > end.</td>
<td>† PRGM 4: For()</td>
</tr>
<tr>
<td>fPart(value)</td>
<td>Returns the fractional part or parts of a real or complex number, expression, list, or matrix.</td>
<td>MATH 4: fPart()</td>
</tr>
<tr>
<td>F pdf(x, numerator df, denominator df)</td>
<td>Computes the F distribution probability between lowerbound and upperbound for the specified numerator df (degrees of freedom) and denominator df.</td>
<td>2nd DISTR 9: Fpdf()</td>
</tr>
<tr>
<td>FRAC Answers</td>
<td>Displays answers as fractions, if possible.</td>
<td>MODE Answers: FRAC</td>
</tr>
<tr>
<td>value→Frac</td>
<td>Displays a real or complex number, expression, list, or matrix as a fraction simplified to its simplest terms.</td>
<td>MATH 1: →Frac</td>
</tr>
<tr>
<td>Full</td>
<td>Sets full screen mode.</td>
<td>† MODE Full</td>
</tr>
<tr>
<td>Func</td>
<td>Sets function graphing mode.</td>
<td>† MODE Func</td>
</tr>
<tr>
<td>GarbageCollect</td>
<td>Displays the garbage collection menu to allow cleanup of unused archive memory.</td>
<td>2nd CATALOG GarbageCollect</td>
</tr>
<tr>
<td>gcd(valueA, valueB)</td>
<td>Returns the greatest common divisor of valueA and valueB, which can be real numbers or lists.</td>
<td>MATH 9: gcd()</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td><code>geometcdf(p,x)</code></td>
<td>Computes a cumulative probability at (x), the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success (p).</td>
<td>2nd [DISTR] DISTR F:geometcdf(</td>
</tr>
<tr>
<td><code>geometpdf(p,x)</code></td>
<td>Computes a probability at (x), the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success (p).</td>
<td>2nd [DISTR] DISTR E:geometpdf(</td>
</tr>
<tr>
<td><code>Get(variable)</code></td>
<td>Gets data from the CBL 2™ or CBR™ System and stores it in (variable).</td>
<td>† PRGM I/O A:Get(</td>
</tr>
<tr>
<td><code>GetCalc(variable [,portflag])</code></td>
<td>Gets contents of (variable) on another TI-84 Plus and stores it to (variable) on the receiving TI-84 Plus. By default, the TI-84 Plus uses the USB port if it is connected. If the USB cable is not connected, it uses the I/O port. (portflag=0) use USB port if connected; (portflag=1) use USB port; (portflag=2) use I/O port.</td>
<td>† PRGM I/O 0:GetCalc(</td>
</tr>
<tr>
<td><code>getDate</code></td>
<td>Returns a list giving the date according to the current value of the clock. The list is in {year,month,day} format.</td>
<td>2nd [CATALOG] getDate</td>
</tr>
<tr>
<td><code>getDtFmt</code></td>
<td>Returns an integer representing the date format that is currently set on the device. (1 = M/D/Y) (2 = D/M/Y) (3 = Y/M/D)</td>
<td>2nd [CATALOG] getDtFmt</td>
</tr>
<tr>
<td><code>getDtStr(integer)</code></td>
<td>Returns a string of the current date in the format specified by (integer), where: (1 = M/D/Y) (2 = D/M/Y) (3 = Y/M/D)</td>
<td>2nd [CATALOG] getDtStr(</td>
</tr>
<tr>
<td><code>getTime</code></td>
<td>Returns a list giving the time according to the current value of the clock. The list is in {hour,minute,second} format. The time is returned in the 24 hour format.</td>
<td>2nd [CATALOG] getTime</td>
</tr>
<tr>
<td><code>getTmFmt</code></td>
<td>Returns an integer representing the clock time format that is currently set on the device. (12 = 12) hour format (24 = 24) hour format</td>
<td>2nd [CATALOG] getTmFmt</td>
</tr>
<tr>
<td><code>getTmStr(integer)</code></td>
<td>Returns a string of the current clock time in the format specified by (integer), where: (12 = 12) hour format (24 = 24) hour format</td>
<td>2nd [CATALOG] getTmStr(</td>
</tr>
<tr>
<td><code>getKey</code></td>
<td>Returns the key code for the current keystroke, or 0, if no key is pressed.</td>
<td>† PRGM I/O 7:getKey</td>
</tr>
<tr>
<td><code>Goto label</code></td>
<td>Transfers control to (label).</td>
<td>† PRGM CTL 8:Goto</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>GraphStyle(function#, graphstyle#)</td>
<td>Sets a graphstyle for function#.</td>
<td>†[PRGM] CTL:GraphStyle(</td>
</tr>
<tr>
<td>GridOff</td>
<td>Turns off grid format.</td>
<td>†[2nd] [FORMAT] GridOff</td>
</tr>
<tr>
<td>GridOn</td>
<td>Turns on grid format.</td>
<td>†[2nd] [FORMAT] GridOn</td>
</tr>
<tr>
<td>G-T</td>
<td>Sets graph-table vertical split-screen mode.</td>
<td>†[MODE] G-T</td>
</tr>
<tr>
<td>Horiz</td>
<td>Sets horizontal split-screen mode.</td>
<td>†[MODE] Horiz</td>
</tr>
<tr>
<td>Horizontal y</td>
<td>Draws a horizontal line at y.</td>
<td>[2nd] [DRAW] DRAW 3:Horizontal</td>
</tr>
<tr>
<td>i</td>
<td>Returns a complex number.</td>
<td>[2nd] [i]</td>
</tr>
<tr>
<td>identity(dimension)</td>
<td>Returns the identity matrix of dimension rows x dimension columns.</td>
<td>[2nd] [MATRIX] MATH 5:identity(</td>
</tr>
<tr>
<td>:If condition :commandA :commands</td>
<td>If condition = 0 (false), skips commandA.</td>
<td>†[PRGM] CTL 1:If</td>
</tr>
<tr>
<td>:If condition :Then :commands :End :commands</td>
<td>Executes commands from Then to End if condition = 1 (true).</td>
<td>†[PRGM] CTL 2:Then</td>
</tr>
<tr>
<td>:If condition :Then :commands :Else :commands :End :commands</td>
<td>Executes commands from Then to Else if condition = 1 (true); from Else to End if condition = 0 (false).</td>
<td>†[PRGM] CTL 3:Else</td>
</tr>
<tr>
<td>imag(value)</td>
<td>Returns the imaginary (nonreal) part of a complex number or list of complex numbers.</td>
<td>[MATH] CPX 3:imag(</td>
</tr>
<tr>
<td>IndpntAsk</td>
<td>Sets table to ask for independent-variable values.</td>
<td>†[2nd] [TBLSET] Indpnt: Ask</td>
</tr>
<tr>
<td>IndpntAuto</td>
<td>Sets table to generate independent-variable values automatically.</td>
<td>†[2nd] [TBLSET] Indpnt: Auto</td>
</tr>
<tr>
<td>Input</td>
<td>Displays graph.</td>
<td>†[PRGM] I/O 1:Input</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Input [variable]</td>
<td>Prompts for value to store to variable.</td>
<td>† [PRGM] I/O 1:Input</td>
</tr>
<tr>
<td>Input ["text",variable]</td>
<td>Displays Strn and stores entered value to variable.</td>
<td>† [PRGM] I/O 1:Input</td>
</tr>
<tr>
<td>inString(string,substring [,start])</td>
<td>Returns the character position in string of the first character of substring beginning at start.</td>
<td>[2nd] [CATALOG] inString()</td>
</tr>
<tr>
<td>int(value)</td>
<td>Returns the largest integer (\leq) a real or complex number, expression, list, or matrix.</td>
<td>MATH NUM 5:int()</td>
</tr>
<tr>
<td>(\Sigma)Int([pmt1,pmt2 [,roundvalue]])</td>
<td>Computes the sum, rounded to roundvalue, of the interest amount between pmt1 and pmt2 for an amortization schedule.</td>
<td>APPS 1:Finance CALC A:ΣInt()</td>
</tr>
<tr>
<td>invNorm(area[,(\mu,\sigma)])</td>
<td>Computes the inverse cumulative normal distribution function for a given area under the normal distribution curve specified by (\mu) and (\sigma).</td>
<td>[2nd] [DISTR] DISTR 3:invNorm()</td>
</tr>
<tr>
<td>invT(area,df)</td>
<td>Computes the inverse cumulative student-t probability function specified by degree of freedom, df for a given area under the curve.</td>
<td>[2nd] [DISTR] DISTR 4:invT()</td>
</tr>
<tr>
<td>iPart(value)</td>
<td>Returns the integer part of a real or complex number, expression, list, or matrix.</td>
<td>MATH NUM 3:iPart()</td>
</tr>
<tr>
<td>irr(CF0,CFList[,CFFreq])</td>
<td>Returns the interest rate at which the net present value of the cash flow is equal to zero.</td>
<td>APPS 1:Finance CALC 8:irr()</td>
</tr>
<tr>
<td>isClockOn</td>
<td>Identifies if clock is ON or OFF. Returns 1 if the clock is ON. Returns 0 if the clock is OFF.</td>
<td>[2nd] [CATALOG] isClockOn</td>
</tr>
<tr>
<td>:IS>(variable,value) :commandA :commands</td>
<td>Increments variable by 1; skips commandA if variable>value.</td>
<td>† [PRGM] CTL A:IS>(</td>
</tr>
<tr>
<td>Listname</td>
<td>Identifies the next one to five characters as a user-created list name.</td>
<td>[2nd] [LIST] OPS B:L</td>
</tr>
<tr>
<td>LabelOff</td>
<td>Turns off axes labels.</td>
<td>† [2nd] [FORMAT] LabelOff</td>
</tr>
<tr>
<td>LabelOn</td>
<td>Turns on axes labels.</td>
<td>† [2nd] [FORMAT] LabelOn</td>
</tr>
<tr>
<td>Lbl label</td>
<td>Creates a label of one or two characters.</td>
<td>† [PRGM] CTL 9:Lbl</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td><code>lcm(valueA,valueB)</code></td>
<td>Returns the least common multiple of <code>valueA</code> and <code>valueB</code>, which can be real numbers or lists.</td>
<td><code>MATH</code> NUM 8:lcm()</td>
</tr>
<tr>
<td><code>length(string)</code></td>
<td>Returns the number of characters in <code>string</code>.</td>
<td><code>2nd</code> [CATALOG] length()</td>
</tr>
<tr>
<td><code>Line(X1,Y1,X2,Y2)</code></td>
<td>Draws a line from (X1,Y1) to (X2,Y2).</td>
<td><code>2nd</code> DRAW 2:Line()</td>
</tr>
<tr>
<td><code>Line(X1,Y1,X2,Y2,0)</code></td>
<td>Erases a line from (X1,Y1) to (X2,Y2).</td>
<td><code>2nd</code> DRAW 2:Line()</td>
</tr>
<tr>
<td><code>LinReg(a+bx)[Xlistname,Ylistname,freqlist, regequ]</code></td>
<td>Fits a linear regression model to <code>Xlistname</code> and <code>Ylistname</code> with frequency <code>freqlist</code>, and stores the regression equation to <code>regequ</code>.</td>
<td><code>[STAT] CALC 8:LinReg(a+bx)</code></td>
</tr>
<tr>
<td><code>LinReg(ax+b)[Xlistname,Ylistname,freqlist, regequ]</code></td>
<td>Fits a linear regression model to <code>Xlistname</code> and <code>Ylistname</code> with frequency <code>freqlist</code>, and stores the regression equation to <code>regequ</code>.</td>
<td><code>[STAT] CALC 4:LinReg(ax+b)</code></td>
</tr>
<tr>
<td><code>LinRegTInt[Xlistname,Ylistname,freqlist, confidence level, regequ]</code></td>
<td>Performs a linear regression and computes the t confidence interval for the slope coefficient b.</td>
<td>† [STAT] TESTS G:LinRegTInt</td>
</tr>
<tr>
<td><code>LinRegTTest[Xlistname,Ylistname,freqlist, alternative, regequ]</code></td>
<td>Performs a linear regression and a t-test. <code>alternative</code>=1 is <; <code>alternative</code>=0 is ≠; <code>alternative</code>=1 is >.</td>
<td>† [STAT] TESTS F:LinRegTTest</td>
</tr>
<tr>
<td><code>ΔList(list)</code></td>
<td>Returns a list containing the differences between consecutive elements in <code>list</code>.</td>
<td><code>2nd</code> [LIST] OPS 7:ΔList()</td>
</tr>
<tr>
<td><code>List → matr(listname1,..., listname n,matrixname)</code></td>
<td>Fills <code>matrixname</code> column by column with the elements from each specified <code>listname</code>.</td>
<td><code>2nd</code> [LIST] OPS 0:List → matr()</td>
</tr>
<tr>
<td><code>ln(value)</code></td>
<td>Returns the natural logarithm of a real or complex number, expression, or list.</td>
<td><code>LN</code></td>
</tr>
<tr>
<td><code>LnReg[Xlistname,Ylistname,freqlist, regequ]</code></td>
<td>Fits a logarithmic regression model to <code>Xlistname</code> and <code>Ylistname</code> with frequency <code>freqlist</code>, and stores the regression equation to <code>regequ</code>.</td>
<td><code>[STAT] CALC 9:LnReg</code></td>
</tr>
<tr>
<td><code>log(value)</code></td>
<td>Returns logarithm of a real or complex number, expression, or list.</td>
<td><code>LOG</code></td>
</tr>
<tr>
<td><code>logBASE(value, base)</code></td>
<td>Returns the logarithm of a specified value determined from a specified base: <code>logBASE(value, base)</code>.</td>
<td><code>MATH</code> A: logBASE</td>
</tr>
<tr>
<td><code>Logistic[Xlistname,Ylistname,freqlist, regequ]</code></td>
<td>Fits a logistic regression model to <code>Xlistname</code> and <code>Ylistname</code> with frequency <code>freqlist</code>, and stores the regression equation to <code>regequ</code>.</td>
<td><code>[STAT] CALC B:Logistic</code></td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Manual-Fit<code>equname</code></td>
<td>Fits a linear equation to a scatter plot.</td>
<td><code>[STAT]</code> CALC D:Manual-Fit</td>
</tr>
<tr>
<td>MATHPRINT</td>
<td>Displays most entries and answers the way they are displayed in textbooks, such as $\frac{1}{2}, \frac{3}{4}$.</td>
<td><code>[MODE]</code> MATHPRINT</td>
</tr>
<tr>
<td><code>Matrlist(matrix, listnameA,...,listname n)</code></td>
<td>Fills each <code>listname</code> with elements from each column in <code>matrix</code>.</td>
<td><code>[2nd] [LIST]</code> OPS A:Matrlist()</td>
</tr>
<tr>
<td><code>Matrlist(matrix, column#,listname)</code></td>
<td>Fills a <code>listname</code> with elements from a specified <code>column#</code> in <code>matrix</code>.</td>
<td><code>[2nd] [LIST]</code> OPS A:Matrlist()</td>
</tr>
<tr>
<td><code>max(valueA,valueB)</code></td>
<td>Returns the larger of <code>valueA</code> and <code>valueB</code>.</td>
<td><code>[MATH]</code> NUM 7:max()</td>
</tr>
<tr>
<td><code>max(list)</code></td>
<td>Returns largest real or complex element in <code>list</code>.</td>
<td><code>[2nd] [LIST]</code> MATH 2:max()</td>
</tr>
<tr>
<td><code>max(listA,listB)</code></td>
<td>Returns a real or complex list of the larger of each pair of elements in <code>listA</code> and <code>listB</code>.</td>
<td><code>[2nd] [LIST]</code> MATH 2:max()</td>
</tr>
<tr>
<td><code>max(value,list)</code></td>
<td>Returns a real or complex list of the larger of <code>value</code> or each <code>list</code> element.</td>
<td><code>[2nd] [LIST]</code> MATH 2:max()</td>
</tr>
<tr>
<td><code>mean(list,freqlist)</code></td>
<td>Returns the mean of <code>list</code> with frequency <code>freqlist</code>.</td>
<td><code>[2nd] [LIST]</code> MATH 3:mean()</td>
</tr>
<tr>
<td><code>median(list,freqlist)</code></td>
<td>Returns the median of <code>list</code> with frequency <code>freqlist</code>.</td>
<td><code>[2nd] [LIST]</code> MATH 4:median()</td>
</tr>
<tr>
<td><code>Med-Med</code> <code>[Xlistname, Ylistname,freqlist, regequ]</code></td>
<td>Fits a median-median model to <code>Xlistname</code> and <code>Ylistname</code> with frequency <code>freqlist</code>, and stores the regression equation to <code>regequ</code>.</td>
<td><code>[STAT]</code> CALC 3:Med-Med</td>
</tr>
<tr>
<td><code>Menu("title","text1",...,"text7",label1,...,label7)</code></td>
<td>Generates a menu of up to seven items during program execution.</td>
<td><code>†</code> [PRGM] CTL C:Menu()</td>
</tr>
<tr>
<td><code>min(valueA,valueB)</code></td>
<td>Returns smaller of <code>valueA</code> and <code>valueB</code>.</td>
<td><code>[MATH]</code> NUM 6:min()</td>
</tr>
<tr>
<td><code>min(list)</code></td>
<td>Returns smallest real or complex element in <code>list</code>.</td>
<td><code>[2nd] [LIST]</code> MATH 1:min()</td>
</tr>
</tbody>
</table>

Appendix A: Functions and Instructions 365
<table>
<thead>
<tr>
<th>Function or Instruction/Arguments</th>
<th>Result</th>
<th>Key or Keys/Menu or Screen/Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{min}(\text{listA, listB}))</td>
<td>Returns real or complex list of the smaller of each pair of elements in (\text{listA}) and (\text{listB}).</td>
<td>2nd [LIST] MATH 1:min()</td>
</tr>
<tr>
<td>(\text{min}(\text{value, list}))</td>
<td>Returns a real or complex list of the smaller of (\text{value}) or each (\text{list}) element.</td>
<td>2nd [LIST] MATH 1:min()</td>
</tr>
<tr>
<td>(\text{valueA nCr valueB})</td>
<td>Returns the number of combinations of (\text{valueA}) taken (\text{valueB}) at a time.</td>
<td>MATH PRB 3:nCr</td>
</tr>
<tr>
<td>(\text{value nCr list})</td>
<td>Returns a list of the combinations of (\text{value}) taken each element in (\text{list}) at a time.</td>
<td>MATH PRB 3:nCr</td>
</tr>
<tr>
<td>(\text{list nCr value})</td>
<td>Returns a list of the combinations of each element in (\text{list}) taken (\text{value}) at a time.</td>
<td>MATH PRB 3:nCr</td>
</tr>
<tr>
<td>(\text{listA nCr listB})</td>
<td>Returns a list of the combinations of each element in (\text{listA}) taken each element in (\text{listB}) at a time.</td>
<td>MATH PRB 3:nCr</td>
</tr>
<tr>
<td>(\text{n/d})</td>
<td>Displays results as a simple fraction.</td>
<td>[ALPHA] [F1] 1: n/d or MATH NUM D: n/d</td>
</tr>
<tr>
<td>(\text{nDeriv(expression, variable, value[,(\varepsilon)])})</td>
<td>Returns approximate numerical derivative of (\text{expression}) with respect to (\text{variable}) at (\text{value}), with specified (\varepsilon).</td>
<td>MATH 8:nDeriv()</td>
</tr>
<tr>
<td>(\text{(\gtrdot) n/d (\leftarrow\rightarrow) Un/d})</td>
<td>Converts the results from a fraction to mixed number or from a mixed number to a fraction, if applicable.</td>
<td>[ALPHA] [F1] 3: (\text{(\gtrdot) n/d (\leftarrow\rightarrow) Un/d}) or MATH NUM A: (\text{(\gtrdot) n/d (\leftarrow\rightarrow) Un/d})</td>
</tr>
<tr>
<td>(\text{(\Rightarrow)Nom(effective rate, compounding periods)})</td>
<td>Computes the nominal interest rate.</td>
<td>APPS 1:Finance CALC B:Nom()</td>
</tr>
<tr>
<td>(\text{Normal})</td>
<td>Sets normal display mode.</td>
<td>(\text{(\Rightarrow) MODE}) Normal</td>
</tr>
<tr>
<td>(\text{normalcdf(lowerbound, upperbound, (\mu), (\sigma))})</td>
<td>Computes the normal distribution probability between (\text{lowerbound}) and (\text{upperbound}) for the specified (\mu) and (\sigma).</td>
<td>2nd [DISTR] DISTR 2:normalcdf()</td>
</tr>
<tr>
<td>(\text{normalpdf((x), (\mu), (\sigma))})</td>
<td>Computes the probability density function for the normal distribution at a specified (x) value for the specified (\mu) and (\sigma).</td>
<td>2nd [DISTR] DISTR 1:normalpdf()</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>not(value)</td>
<td>Returns 0 if value is ≠ 0. value can be a real number, expression, or list.</td>
<td>2nd [TEST] LOGIC 4:not(</td>
</tr>
<tr>
<td>valueA nPr valueB</td>
<td>Returns the number of permutations of valueA taken valueB at a time.</td>
<td>MATH PRB 2:nPr</td>
</tr>
<tr>
<td>value nPr list</td>
<td>Returns a list of the permutations of value taken each element in list at a time.</td>
<td>MATH PRB 2:nPr</td>
</tr>
<tr>
<td>list nPr value</td>
<td>Returns a list of the permutations of each element in list taken value at a time.</td>
<td>MATH PRB 2:nPr</td>
</tr>
<tr>
<td>listA nPr listB</td>
<td>Returns a list of the permutations of each element in listA taken each element in listB at a time.</td>
<td>MATH PRB 2:nPr</td>
</tr>
<tr>
<td>npv(interest rate,CF0, CFList[,CFFreq])</td>
<td>Computes the sum of the present values for cash inflows and outflows.</td>
<td>APPS: 1:Finance CALC 7:npv(</td>
</tr>
<tr>
<td>valueA or valueB</td>
<td>Returns 1 if valueA or valueB is ≠ 0. valueA and valueB can be real numbers, expressions, or lists.</td>
<td>2nd [TEST] LOGIC 2:or</td>
</tr>
<tr>
<td>Output(row,column,"text")</td>
<td>Displays text beginning at specified row and column.</td>
<td>† PRGM I/O 6:Output(</td>
</tr>
<tr>
<td>Output(row,column,value)</td>
<td>Displays value beginning at specified row and column.</td>
<td>† PRGM I/O 6:Output(</td>
</tr>
<tr>
<td>Param</td>
<td>Sets parametric graphing mode.</td>
<td>† [MODE] Par</td>
</tr>
<tr>
<td>Pause</td>
<td>Suspends program execution until you press ENTER.</td>
<td>† PRGM CTL 8:Pause</td>
</tr>
<tr>
<td>Pause [value]</td>
<td>Displays value; suspends program execution until you press ENTER.</td>
<td>† PRGM CTL 8:Pause</td>
</tr>
<tr>
<td>Plot[type,Xlistname,Ylistname,mark]</td>
<td>Defines Plot# (1, 2, or 3) of type Scatter or xyLine for Xlistname and Ylistname using mark.</td>
<td>† 2nd [STAT PLOT] STAT PLOTS 1:Plot1- 2:Plot2- 3:Plot3-</td>
</tr>
<tr>
<td>Plot[type,Xlistname,freqlist]</td>
<td>Defines Plot# (1, 2, or 3) of type Histogram or Boxplot for Xlistname with frequency freqlist.</td>
<td>† 2nd [STAT PLOT] STAT PLOTS 1:Plot1- 2:Plot2- 3:Plot3-</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Plot(^#)(type,Xlistname, freglist,mark)</td>
<td>Defines Plot(^#) (1, 2, or 3) of type ModBoxplot for Xlistname with frequency freglist using mark.</td>
<td>† [2nd] [STAT PLOT] STAT PLOTS 1:Plot1- 2:Plot2- 3:Plot3-</td>
</tr>
<tr>
<td>Plot(^#)(type,datalistname, data axis,mark)</td>
<td>Defines Plot(^#) (1, 2, or 3) of type NormProbPlot for datalistname on data axis using mark. data axis can be X or Y.</td>
<td>† [2nd] [STAT PLOT] STAT PLOTS 1:Plot1- 2:Plot2- 3:Plot3-</td>
</tr>
<tr>
<td>PlotsOff [1,2,3]</td>
<td>Deselects all stat plots or one or more specified stat plots (1, 2, or 3).</td>
<td>2nd [STAT PLOT] STAT PLOTS 4:PlotsOff</td>
</tr>
<tr>
<td>PlotsOn [1,2,3]</td>
<td>Selects all stat plots or one or more specified stat plots (1, 2, or 3).</td>
<td>2nd [STAT PLOT] STAT PLOTS 5:PlotsOn</td>
</tr>
<tr>
<td>Pmt_Bgn</td>
<td>Specifies an annuity due, where payments occur at the beginning of each payment period.</td>
<td>[APPS] 1:Finance CALC F:Pmt_Bgn</td>
</tr>
<tr>
<td>Pmt_End</td>
<td>Specifies an ordinary annuity, where payments occur at the end of each payment period.</td>
<td>[APPS] 1:Finance CALC E:Pmt_End</td>
</tr>
<tr>
<td>poissoncdf((\mu,x))</td>
<td>Computes a cumulative probability at (x) for the discrete Poisson distribution with specified mean (\mu).</td>
<td>† [2nd] [DISTR] DISTR D:poissoncdf(</td>
</tr>
<tr>
<td>poissonpdf((\mu,x))</td>
<td>Computes a probability at (x) for the discrete Poisson distribution with the specified mean (\mu).</td>
<td>† [2nd] [DISTR] DISTR C:poissonpdf(</td>
</tr>
<tr>
<td>Polar</td>
<td>Sets polar graphing mode.</td>
<td>† [MODE] Pol</td>
</tr>
<tr>
<td>complex value ➔Polar</td>
<td>Displays complex value in polar format.</td>
<td>[MATH] CPX 7 ➔Polar</td>
</tr>
<tr>
<td>PolarGC</td>
<td>Sets polar graphing coordinates format.</td>
<td>† [2nd] [FORMAT] PolarGC</td>
</tr>
<tr>
<td>prgm name</td>
<td>Executes the program name.</td>
<td>† [PRGM] CTRL D:prgm</td>
</tr>
<tr>
<td>(\Sigma)Prn([\text{pmt1,pmt2 {roundvalue}}])</td>
<td>Computes the sum, rounded to (\text{roundvalue}), of the principal amount between (\text{pmt1}) and (\text{pmt2}) for an amortization schedule.</td>
<td>[APPS] 1:Finance CALC 0:(\Sigma)Prn(</td>
</tr>
<tr>
<td>prod([\text{list,start,end}}])</td>
<td>Returns product of \text{list} elements between \text{start} and \text{end}.</td>
<td>[2nd] [LIST] MATH 6:prod(</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Prompt (variable_A) ([, variable_B, \ldots, variable_n])</td>
<td>Prompts for value for (variable_A), then (variable_B), and so on.</td>
<td>[PRGM] I/O 2:Prompt</td>
</tr>
<tr>
<td>1-PropZInt (x, n) ([, confidence\ level])</td>
<td>Computes a one-proportion (z) confidence interval.</td>
<td>[STAT] TESTS A:1-PropZInt(</td>
</tr>
<tr>
<td>2-PropZInt (x_1, n_1, x_2, n_2) ([, confidence\ level])</td>
<td>Computes a two-proportion (z) confidence interval.</td>
<td>[STAT] TESTS B:2-PropZInt(</td>
</tr>
<tr>
<td>1-PropZTest (p, x, n) ([, alternative, drawflag])</td>
<td>Computes a one-proportion (z) test. (alternative = -1) is (<); (alternative = 0) is #; (alternative = 1) is (>). (drawflag = 1) draws results; (drawflag = 0) calculates results.</td>
<td>[STAT] TESTS 5:1-PropZTest(</td>
</tr>
<tr>
<td>2-PropZTest (x_1, n_1, x_2, n_2) ([, alternative, drawflag])</td>
<td>Computes a two-proportion (z) test. (alternative = -1) is (<); (alternative = 0) is #; (alternative = 1) is (>). (drawflag = 1) draws results; (drawflag = 0) calculates results.</td>
<td>[STAT] TESTS 6:2-PropZTest(</td>
</tr>
<tr>
<td>Pt-Change (x, y)</td>
<td>Reverses a point at ((x, y)).</td>
<td>[2nd] [DRAW] POINTS 3:Pt-Change(</td>
</tr>
<tr>
<td>Pt-Off (x, y [, mark])</td>
<td>Erases a point at ((x, y)) using (mark).</td>
<td>[2nd] [DRAW] POINTS 2:Pt-Off(</td>
</tr>
<tr>
<td>Pt-On (x, y [, mark])</td>
<td>Draws a point at ((x, y)) using (mark).</td>
<td>[2nd] [DRAW] POINTS 1:Pt-On(</td>
</tr>
<tr>
<td>PwrReg (Xlistname, Ylistname, freqlist, regequ)</td>
<td>Fits a power regression model to (Xlistname) and (Ylistname) with frequency (freqlist), and stores the regression equation to (regequ).</td>
<td>[STAT] CALC A:PwrReg</td>
</tr>
<tr>
<td>Pxl-Change (row, column)</td>
<td>Reverses pixel at ((row, column)); (0 \leq row \leq 62) and (0 \leq column \leq 94).</td>
<td>[2nd] [DRAW] POINTS 6:Pxl-Change(</td>
</tr>
<tr>
<td>Pxl-Off (row, column)</td>
<td>Erases pixel at ((row, column)); (0 \leq row \leq 62) and (0 \leq column \leq 94).</td>
<td>[2nd] [DRAW] POINTS 5:Pxl-Off(</td>
</tr>
<tr>
<td>Pxl-On (row, column)</td>
<td>Draws pixel at ((row, column)); (0 \leq row \leq 62) and (0 \leq column \leq 94).</td>
<td>[2nd] [DRAW] POINTS 4:Pxl-On(</td>
</tr>
<tr>
<td>pxl-Test (row, column)</td>
<td>Returns 1 if pixel ((row, column)) is on, 0 if it is off; (0 \leq row \leq 62) and (0 \leq column \leq 94).</td>
<td>[2nd] [DRAW] POINTS 7:pxl-Test(</td>
</tr>
<tr>
<td>PRx (r, \theta)</td>
<td>Returns (X), given polar coordinates (r) and (\theta) or a list of polar coordinates.</td>
<td>[2nd] [ANGLE] ANGLE 7:PRx(</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>P→Ry(ᵣ,θ)</td>
<td>Returns Y, given polar coordinates r and θ or a list of polar coordinates.</td>
<td>2nd [ANGLE] ANGLE 8:P→Ry(</td>
</tr>
<tr>
<td>QuadReg [Xlistname, Ylistname, freqlist, regequ]</td>
<td>Fits a quadratic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ.</td>
<td>STAT CALC 5:QuadReg</td>
</tr>
<tr>
<td>QuartReg [Xlistname, Ylistname, freqlist, regequ]</td>
<td>Fits a quartic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ.</td>
<td>STAT CALC 7:QuartReg</td>
</tr>
<tr>
<td>Radian</td>
<td>Sets radian angle mode.</td>
<td>† [MODE] Radian</td>
</tr>
<tr>
<td>rand([numtrials])</td>
<td>Returns a random number between 0 and 1 for a specified number of trials numtrials.</td>
<td>MATH PRB 1:rand</td>
</tr>
<tr>
<td>randBin(numtrials,prob [,numsimulations])</td>
<td>Generates and displays a random real number from a specified Binomial distribution.</td>
<td>MATH PRB 7:randBin(</td>
</tr>
<tr>
<td>randInt(lower,upper [numtrials])</td>
<td>Generates and displays a random integer within a range specified by lower and upper integer bounds for a specified number of trials numtrials.</td>
<td>MATH PRB 5:randInt(</td>
</tr>
<tr>
<td>randIntNoRep(lowerint,upperint)</td>
<td>Returns a random ordered list of integers from a lower integer to an upper integer which may include the lower integer and upper integer.</td>
<td>MATH PRB 8:randIntNoRep(</td>
</tr>
<tr>
<td>randM(rows,columns)</td>
<td>Returns a random matrix of rows (1-99) × columns (1-99).</td>
<td>2nd [MATRIX] MATH 6:randM(</td>
</tr>
<tr>
<td>randNorm(μ,σ [numtrials])</td>
<td>Generates and displays a random real number from a specified Normal distribution specified by μ and σ for a specified number of trials numtrials.</td>
<td>MATH PRB 6:randNorm(</td>
</tr>
<tr>
<td>rᵉ^qθᵢ</td>
<td>Sets the mode to polar complex number mode (rᵉ^qθᵢ).</td>
<td>† [MODE] rᵉ^qθᵢ</td>
</tr>
<tr>
<td>Real</td>
<td>Sets mode to display complex results only when you enter complex numbers.</td>
<td>† [MODE] Real</td>
</tr>
<tr>
<td>real(value)</td>
<td>Returns the real part of a complex number or list of complex numbers.</td>
<td>MATH CPX 2:real(</td>
</tr>
<tr>
<td>RecallGDB n</td>
<td>Restores all settings stored in the graph database variable GDBn.</td>
<td>2nd [DRAW] STO 4:RecallGDB</td>
</tr>
<tr>
<td>RecallPic n</td>
<td>Displays the graph and adds the picture stored in Picn.</td>
<td>2nd [DRAW] STO 2:RecallPic</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>complex value ➤ Rect</td>
<td>Displays complex value or list in rectangular format.</td>
<td>CPX MATH 6 ➤ Rect</td>
</tr>
<tr>
<td>RectGC</td>
<td>Sets rectangular graphing coordinates format.</td>
<td>† [2nd] [FORMAT] RectGC</td>
</tr>
<tr>
<td>ref(matrix)</td>
<td>Returns the row-echelon form of a matrix.</td>
<td>[2nd] [MATRIX] MATH A: ref()</td>
</tr>
<tr>
<td>remainder (dividend, divisor)</td>
<td>Reports the remainder as a whole number from a division of two whole numbers where the divisor is not zero.</td>
<td>MATH NUM 0 : remainder()</td>
</tr>
<tr>
<td>remainder (list, divisor)</td>
<td>Reports the remainder as a whole number from a division of two lists where the divisor is not zero.</td>
<td>MATH NUM 0 : remainder()</td>
</tr>
<tr>
<td>remainder (dividend, list)</td>
<td>Reports the remainder as a whole number from a division of two whole numbers where the divisor is a list.</td>
<td>MATH NUM 0 : remainder()</td>
</tr>
<tr>
<td>remainder (list, list)</td>
<td>Reports the remainder as a whole number from a division of two lists.</td>
<td>MATH NUM 0 : remainder()</td>
</tr>
<tr>
<td>:Repeat condition : commands : End : commands</td>
<td>Executes commands until condition is true.</td>
<td>† [PRGM] CTL 6 : Repeat</td>
</tr>
<tr>
<td>Return</td>
<td>Returns to the calling program.</td>
<td>† [PRGM] CTL E : Return</td>
</tr>
<tr>
<td>round (value, #decimals)</td>
<td>Returns a number, expression, list, or matrix rounded to #decimals (≤ 9).</td>
<td>MATH NUM 2 : round()</td>
</tr>
<tr>
<td>*row (value, matrix, row)</td>
<td>Returns a matrix with row of matrix multiplied by value and stored in row.</td>
<td>[2nd] [MATRIX] MATH E : *row()</td>
</tr>
<tr>
<td>row+ (matrix, rowA, rowB)</td>
<td>Returns a matrix with rowA of matrix added to rowB and stored in rowB.</td>
<td>[2nd] [MATRIX] MATH D : row+()</td>
</tr>
<tr>
<td>*row+ (value, matrix, rowA, rowB)</td>
<td>Returns a matrix with rowA of matrix multiplied by value, added to rowB, and stored in rowB.</td>
<td>[2nd] [MATRIX] MATH F : *row+()</td>
</tr>
<tr>
<td>rowSwap (matrix, rowA, rowB)</td>
<td>Returns a matrix with rowA of matrix swapped with rowB.</td>
<td>[2nd] [MATRIX] MATH C : rowSwap()</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td><code>rref(matrix)</code></td>
<td>Returns the reduced row-echelon form of a matrix.</td>
<td>2nd [MATRIX] MATH B:rref()</td>
</tr>
<tr>
<td><code>R²Pr(x,y)</code></td>
<td>Returns R, given rectangular coordinates x and y or a list of rectangular coordinates.</td>
<td>2nd [ANGLE] ANGLE 5:R²Pr()</td>
</tr>
<tr>
<td><code>R²Pθ(x,y)</code></td>
<td>Returns $θ$, given rectangular coordinates x and y or a list of rectangular coordinates.</td>
<td>2nd [ANGLE] ANGLE 6:R²Pθ()</td>
</tr>
<tr>
<td><code>2-SampFTest(listname1, listname2,freqlist1,freqlist2,alternative,drawflag)</code></td>
<td>Performs a two-sample F test. <code>alternative=1</code> is $<$; <code>alternative=0</code> is $=$; <code>alternative=1</code> is $>$. <code>drawflag=1</code> draws results; <code>drawflag=0</code> calculates results.</td>
<td>† STAT TESTS E:2-SampFTest</td>
</tr>
<tr>
<td><code>2-SampFTest(Sx1,n1,Sx2,n2,alternative,drawflag)</code></td>
<td>Performs a two-sample F test. <code>alternative=1</code> is $<$; <code>alternative=0</code> is $=$; <code>alternative=1</code> is $>$. <code>drawflag=1</code> draws results; <code>drawflag=0</code> calculates results.</td>
<td>† STAT TESTS E:2-SampFTest</td>
</tr>
<tr>
<td><code>2-SampTInt(listname1, listname2,freqlist1,freqlist2,confidence level,pooled)</code></td>
<td>Computes a two-sample t confidence interval. <code>pooled=1</code> pools variances; <code>pooled=0</code> does not pool variances.</td>
<td>† STAT TESTS 0:2-SampTInt</td>
</tr>
<tr>
<td><code>2-SampTInt(\bar{x}_1,Sx_1,n_1,\bar{x}_2,Sx_2,n_2,\text{confidence level,pooled})</code></td>
<td>Computes a two-sample t confidence interval. <code>pooled=1</code> pools variances; <code>pooled=0</code> does not pool variances.</td>
<td>† STAT TESTS 0:2-SampTInt</td>
</tr>
<tr>
<td><code>2-SampTTest(listname1, listname2,freqlist1,freqlist2,alternative,pooled,drawflag)</code></td>
<td>Computes a two-sample t test. <code>alternative=1</code> is $<$; <code>alternative=0</code> is $=$; <code>alternative=1</code> is $>$. <code>pooled=1</code> pools variances; <code>pooled=0</code> does not pool variances. <code>drawflag=1</code> draws results; <code>drawflag=0</code> calculates results.</td>
<td>† STAT TESTS 4:2-SampTTest</td>
</tr>
<tr>
<td><code>2-SampTTest(\bar{x}_1,Sx_1,n_1,\bar{x}_2,Sx_2,n_2,\text{alternative,pooled,drawflag})</code></td>
<td>Computes a two-sample t test. <code>alternative=1</code> is $<$; <code>alternative=0</code> is $=$; <code>alternative=1</code> is $>$. <code>pooled=1</code> pools variances; <code>pooled=0</code> does not pool variances. <code>drawflag=1</code> draws results; <code>drawflag=0</code> calculates results.</td>
<td>† STAT TESTS 4:2-SampTTest</td>
</tr>
<tr>
<td><code>2-SampZInt(\sigma_1,\sigma_2)</code></td>
<td>Computes a two-sample z confidence interval.</td>
<td>† STAT TESTS 9:2-SampZInt</td>
</tr>
<tr>
<td><code>2-SampZInt(\sigma_1,\sigma_2,\bar{x}_1,n_1,\bar{x}_2,n_2,\text{confidence level})</code></td>
<td>Computes a two-sample z confidence interval.</td>
<td>† STAT TESTS 9:2-SampZInt</td>
</tr>
</tbody>
</table>
2-SampZTest(σ_1, σ_2)

- **Signature**: `2-SampZTest(\(s_1, s_2 \) [\(\text{listname1, listname2, freqlist1, freqlist2, alternative, drawflag} \])\)`
- **Example**: `2-SampZTest(\(s_1, s_2 \) [\(\text{listname1, listname2, freqlist1, freqlist2, alternative, drawflag} \])\)`
- **Description**: Computes a two-sample z test. $\text{alternative} = 1$ is $<$; $\text{alternative} = 0$ is \neq; $\text{alternative} = 1$ is $>$. $\text{drawflag} = 1$ draws results; $\text{drawflag} = 0$ calculates results.
- **Key or Keys/Menu or Screen/Item**: `† [STAT TESTS 3:2-SampZTest]`

2-SampZTest($\bar{x}_1, n_1, \bar{x}_2, n_2$)

- **Signature**: `2-SampZTest(\(\bar{x}_1, n_1, \bar{x}_2, n_2 \) [\(\text{alternative, drawflag} \])\)`
- **Example**: `2-SampZTest(\(\bar{x}_1, n_1, \bar{x}_2, n_2 \) [\(\text{alternative, drawflag} \])\)`
- **Description**: Computes a two-sample z test. $\text{alternative} = 1$ is $<$; $\text{alternative} = 0$ is \neq; $\text{alternative} = 1$ is $>$. $\text{drawflag} = 1$ draws results; $\text{drawflag} = 0$ calculates results.
- **Key or Keys/Menu or Screen/Item**: `† [STAT TESTS 3:2-SampZTest]`

Sci

- **Description**: Sets scientific notation display mode.
- **Key or Keys/Menu or Screen/Item**: `† [MODE Sci]`

Select(Xlistname, Ylistname)

- **Description**: Selects one or more specific data points from a scatter plot or xyLine plot (only), and then stores the selected data points to two new lists, $Xlistname$ and $Ylistname$.
- **Key or Keys/Menu or Screen/Item**: `2nd [LIST] OPS 8:Select()`

Send(variable)

- **Description**: Sends contents of $variable$ to the CBL 2™ or CBR™ System.
- **Key or Keys/Menu or Screen/Item**: `† [PRGM I/O B:Send]`

seq(expression, variable, begin, end, increment)

- **Description**: Returns list created by evaluating $expression$ with regard to $variable$, from $begin$ to end by $increment$.
- **Key or Keys/Menu or Screen/Item**: `2nd [LIST] OPS 5:seq()`

Seq

- **Description**: Sets sequence graphing mode.
- **Key or Keys/Menu or Screen/Item**: `† [MODE Seq]`

Sequential

- **Description**: Sets mode to graph functions sequentially.
- **Key or Keys/Menu or Screen/Item**: `† [MODE Sequential]`

setDate(year, month, day)

- **Description**: Sets the date using a year, month, day format. The $year$ must be 4 digits; $month$ and day can be 1 or 2 digit.
- **Key or Keys/Menu or Screen/Item**: `2nd [CATALOG] setDate()`

setDtFmt(integer)

- **Description**: Sets the date format.
- **Key or Keys/Menu or Screen/Item**: `2nd [CATALOG] setDtFmt()`

setTime(hour, minute, second)

- **Description**: Sets the time using an hour, minute, second format. The $hour$ must be in 24 hour format, in which 13 = 1 p.m.
- **Key or Keys/Menu or Screen/Item**: `2nd [CATALOG] setTime()`

setTmFmt(integer)

- **Description**: Sets the time format.
- **Key or Keys/Menu or Screen/Item**: `2nd [CATALOG] setTmFmt()`

SetUpEditor

- **Description**: Removes all list names from the stat list editor, and then restores list names $L1$ through $L6$ to columns 1 through 6.
- **Key or Keys/Menu or Screen/Item**: `STAT EDIT 5:SetUpEditor`

SetUpEditor listname1 [listname2, ..., listname20]...

- **Description**: Removes all list names from the stat list editor, then sets it up to display one or more $listnames$ in the specified order, starting with column 1.
- **Key or Keys/Menu or Screen/Item**: `STAT EDIT 5:SetUpEditor`

Shade(lowerfunc, upperfunc, [Xleft, Xright, pattern, patres])

- **Description**: Draws $lowerfunc$ and $upperfunc$ in terms of X on the current graph and uses $pattern$ and $patres$ to shade the area bounded by $lowerfunc$, $upperfunc$, $Xleft$, and $Xright$.
- **Key or Keys/Menu or Screen/Item**: `2nd [DRAW DRAW 7:Shade]`
<table>
<thead>
<tr>
<th>Function or Instruction/Arguments</th>
<th>Result</th>
<th>Key or Keys/Menu or Screen/Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shade(\chi^2_{(\text{lowerbound, upperbound, } df)})</td>
<td>Draws the density function for the (\chi^2) distribution specified by degrees of freedom (df) and shades the area between (\text{lowerbound}) and (\text{upperbound}).</td>
<td>2nd [DISTR] DRAW 3:Shade(\chi^2)</td>
</tr>
<tr>
<td>Shade(F)((\text{lowerbound, upperbound, numerator } df, \text{ denominator } df))</td>
<td>Draws the density function for the (F) distribution specified by numerator (df) and denominator (df) and shades the area between (\text{lowerbound}) and (\text{upperbound}).</td>
<td>2nd [DISTR] DRAW 4:Shade(F)</td>
</tr>
<tr>
<td>Shade(\text{Norm}(\text{lowerbound, upperbound}[\mu, \sigma]))</td>
<td>Draws the normal density function specified by (\mu) and (\sigma) and shades the area between (\text{lowerbound}) and (\text{upperbound}).</td>
<td>2nd [DISTR] DRAW 1:Shade(\text{Norm})</td>
</tr>
<tr>
<td>Shade_(t)(lowerbound, upperbound[, df])</td>
<td>Draws the density function for the Student-t distribution specified by degrees of freedom (df), and shades the area between (\text{lowerbound}) and (\text{upperbound}).</td>
<td>2nd [DISTR] DRAW 2:Shade_(t)</td>
</tr>
<tr>
<td>Simul</td>
<td>Sets mode to graph functions simultaneously.</td>
<td>† [MODE] Simul</td>
</tr>
<tr>
<td>(\sin(value))</td>
<td>Returns the sine of a real number, expression, or list.</td>
<td>[\text{SIN}]</td>
</tr>
<tr>
<td>(\sin^{-1}(value))</td>
<td>Returns the arcsine of a real number, expression, or list.</td>
<td>2nd [SIN(^{-1})]</td>
</tr>
<tr>
<td>(\sinh(value))</td>
<td>Returns the hyperbolic sine of a real number, expression, or list.</td>
<td>2nd [CATALOG] sinh(</td>
</tr>
<tr>
<td>(\sinh^{-1}(value))</td>
<td>Returns the hyperbolic arcsine of a real number, expression, or list.</td>
<td>2nd [CATALOG] sinh(^{-1})</td>
</tr>
<tr>
<td>(\text{SinReg}[\text{iterations, Xlistname, Ylistname, period, regequ}])</td>
<td>Attempts (\text{iterations}) times to fit a sinusoidal regression model to (\text{Xlistname}) and (\text{Ylistname}) using a (\text{period}) guess, and stores the regression equation to (\text{regequ}).</td>
<td>[STAT] CALC C:SinReg</td>
</tr>
<tr>
<td>(\text{solve(expression, variable, {guess}, {lower, upper})})</td>
<td>Solves (\text{expression}) for (\text{variable}), given an initial (\text{guess}) and (\text{lower}) and (\text{upper}) bounds within which the solution is sought.</td>
<td>† [MATH] MATH 0:solve(</td>
</tr>
<tr>
<td>(\text{SortA(listname)})</td>
<td>Sorts elements of (\text{listname}) in ascending order.</td>
<td>2nd [LIST] OPS 1:SortA(</td>
</tr>
<tr>
<td>(\text{SortA(keylistname, dependlist1[, dependlist2[, ...], dependlist (n)]}))</td>
<td>Sorts elements of (\text{keylistname}) in ascending order, then sorts each (\text{dependlist}) as a dependent list.</td>
<td>2nd [LIST] OPS 1:SortA(</td>
</tr>
<tr>
<td>(\text{SortD(listname)})</td>
<td>Sorts elements of (\text{listname}) in descending order.</td>
<td>2nd [LIST] OPS 2:SortD(</td>
</tr>
<tr>
<td>(\text{SortD(keylistname, dependlist1[, dependlist2[, ...], dependlist (n)]}))</td>
<td>Sorts elements of (\text{keylistname}) in descending order, then sorts each (\text{dependlist}) as a dependent list.</td>
<td>2nd [LIST] OPS 2:SortD(</td>
</tr>
<tr>
<td>(\text{startTmr})</td>
<td>Starts the clock timer. Store or note the displayed value, and use it as the argument for \text{checkTmr()}) to check the elapsed time.</td>
<td>2nd [CATALOG] startTmr</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>STATWIZARD OFF</td>
<td>Disables wizard syntax help for statistical commands, distributions, and seq().</td>
<td>2nd [CATALOG] STATWIZARD OFF</td>
</tr>
<tr>
<td>STATWIZARD ON</td>
<td>Enables wizard syntax help for statistical commands, distributions, and seq().</td>
<td>2nd [CATALOG] STATWIZARD ON</td>
</tr>
<tr>
<td>stdDev(list[,freqlist])</td>
<td>Returns the standard deviation of the elements in list with frequency freqlist.</td>
<td>2nd [LIST] MATH 7:stdDev(</td>
</tr>
<tr>
<td>Stop</td>
<td>Ends program execution; returns to home screen.</td>
<td>† [PRGM] CTL F:Stop</td>
</tr>
<tr>
<td>Store: value→variable</td>
<td>Stores value in variable.</td>
<td>2nd [STO]</td>
</tr>
<tr>
<td>StoreGDB n</td>
<td>Stores current graph in database GDBn.</td>
<td>2nd [DRAW] STO 3:StoreGDB</td>
</tr>
<tr>
<td>StorePic n</td>
<td>Stores current picture in picture Picn.</td>
<td>2nd [DRAW] STO 1:StorePic</td>
</tr>
<tr>
<td>StringEqu(string,Y= var)</td>
<td>Converts string into an equation and stores it in Y= var.</td>
<td>2nd [CATALOG] StringEqu(</td>
</tr>
<tr>
<td>sub(string,begin,length)</td>
<td>Returns a string that is a subset of another string, from begin to length.</td>
<td>2nd [CATALOG] sub(</td>
</tr>
<tr>
<td>sum(list,[start,end])</td>
<td>Returns the sum of elements of list from start to end.</td>
<td>2nd [LIST] MATH 5:sum(</td>
</tr>
<tr>
<td>summation Σ(expression [start,end])</td>
<td>Displays the MathPrint™ summation entry template and returns the sum of elements of list from start to end, where start <= end.</td>
<td>MATH NUM 0: summation Σ(</td>
</tr>
<tr>
<td>tan(value)</td>
<td>Returns the tangent of a real number, expression, or list.</td>
<td>TAN</td>
</tr>
<tr>
<td>tan⁻¹(value)</td>
<td>Returns the arctangent of a real number, expression, or list.</td>
<td>2nd [TAN⁻¹]</td>
</tr>
<tr>
<td>Tangent(expression, value)</td>
<td>Draws a line tangent to expression at X=value.</td>
<td>2nd [DRAW] DRAW 5:Tangent(</td>
</tr>
<tr>
<td>tanh(value)</td>
<td>Returns hyperbolic tangent of a real number, expression, or list.</td>
<td>2nd [CATALOG] tanh(</td>
</tr>
<tr>
<td>tanh⁻¹(value)</td>
<td>Returns the hyperbolic arctangent of a real number, expression, or list.</td>
<td>2nd [CATALOG] tanh⁻¹(</td>
</tr>
<tr>
<td>tcdf(lowerbound, upperbound,df)</td>
<td>Computes the Student-t distribution probability between lowerbound and upperbound for the specified degrees of freedom df.</td>
<td>2nd [DISTR] DISTR 6:tcdf(</td>
</tr>
</tbody>
</table>
Appendix A: Functions and Instructions

<table>
<thead>
<tr>
<th>Function or Instruction/Arguments</th>
<th>Result</th>
<th>Key or Keys/Menu or Screen/Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text(row, column, text₁, text₂, ..., text n)</td>
<td>Writes text on graph beginning at pixel (row, column), where 0 ≤ row ≤ 57 and 0 ≤ column ≤ 94.</td>
<td>[2nd] DRAW DRAW 0:Text(</td>
</tr>
<tr>
<td>Then See If:Then</td>
<td>Time</td>
<td>Sets sequence graphs to plot with respect to time.</td>
</tr>
<tr>
<td>timeCnv(seconds)</td>
<td>Converts seconds to units of time that can be more easily understood for evaluation. The list is in {days, hours, minutes, seconds} format.</td>
<td>[2nd] [CATALOG] timeCnv</td>
</tr>
<tr>
<td>Tinterval [listname, freqlist, confidence level] (Data list input)</td>
<td>Computes a t confidence interval.</td>
<td>[STAT] TESTS 8:TInterval</td>
</tr>
<tr>
<td>Tinterval X, S, n [confidence level] (Summary stats input)</td>
<td>Computes a t confidence interval.</td>
<td>[STAT] TESTS 8:TInterval</td>
</tr>
<tr>
<td>tpdf(x, df)</td>
<td>Computes the probability density function (pdf) for the Student-t distribution at a specified x value with specified degrees of freedom df.</td>
<td>[2nd] [DISTR] DISTR 5:tpdf(</td>
</tr>
<tr>
<td>Trace</td>
<td>Displays the graph and enters TRACE mode.</td>
<td>TRACE</td>
</tr>
<tr>
<td>T-Test μ0 [listname, freqlist, alternative, drawflag] (Data list input)</td>
<td>Performs a t test with frequency freqlist. alternative=1 is <; alternative=0 is ≠; alternative=-1 is >. drawflag=1 draws results; drawflag=0 calculates results.</td>
<td>[STAT] TESTS 2:T-Test</td>
</tr>
<tr>
<td>T-Test μ0, X, S, n [alternative, drawflag] (Summary stats input)</td>
<td>Performs a t test with frequency freqlist. alternative=1 is <; alternative=0 is ≠; alternative=-1 is >. drawflag=1 draws results; drawflag=0 calculates results.</td>
<td>[STAT] TESTS 2:T-Test</td>
</tr>
<tr>
<td>tvm_FV([N, I%, PV, PMT, P/Y, C/Y])</td>
<td>Computes the future value.</td>
<td>[APPS] 1:Finance CALC 6:tvm_FV</td>
</tr>
<tr>
<td>tvm_I%([N, PV, PMT, FV, P/Y, C/Y])</td>
<td>Computes the annual interest rate.</td>
<td>[APPS] 1:Finance CALC 3:tvm_I%</td>
</tr>
<tr>
<td>tvm_N([I%, PV, PMT, FV, P/Y, C/Y])</td>
<td>Computes the number of payment periods.</td>
<td>[APPS] 1:Finance CALC 5:tvm_N</td>
</tr>
<tr>
<td>tvm_Pmt([N, I%, PV, FV, P/Y, C/Y])</td>
<td>Computes the amount of each payment.</td>
<td>[APPS] 1:Finance CALC 2:tvm_Pmt</td>
</tr>
<tr>
<td>tvm_PV([N, I%, PMT, FV, P/Y, C/Y])</td>
<td>Computes the present value.</td>
<td>[APPS] 1:Finance CALC 4:tvm_PV</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>UnArchive</td>
<td>Moves the specified variables from the user data archive memory to RAM. To archive variables, use Archive.</td>
<td>[2nd] [MEM] 6:UnArchive</td>
</tr>
<tr>
<td>Un/d</td>
<td>Displays results as a mixed number, if applicable.</td>
<td>[MATH] NUM C: Un/d</td>
</tr>
<tr>
<td>uvAxes</td>
<td>Sets sequence graphs to plot $u(n)$ on the x-axis and $v(n)$ on the y-axis.</td>
<td>[2nd] [FORMAT] uv</td>
</tr>
<tr>
<td>uwAxes</td>
<td>Sets sequence graphs to plot $u(n)$ on the x-axis and $w(n)$ on the y-axis.</td>
<td>[2nd] [FORMAT] uw</td>
</tr>
<tr>
<td>1-Var Stats [Xlistname, freqlist]</td>
<td>Performs one-variable analysis on the data in Xlistname with frequency freqlist.</td>
<td>[STAT] CALC 1:1-Var Stats</td>
</tr>
<tr>
<td>2-Var Stats [Xlistname, Ylistname, freqlist]</td>
<td>Performs two-variable analysis on the data in Xlistname and Ylistname with frequency freqlist.</td>
<td>[STAT] CALC 2:2-Var Stats</td>
</tr>
<tr>
<td>variance(list,freqlist)</td>
<td>Returns the variance of the elements in list with frequency freqlist.</td>
<td>[2nd] [LIST] MATH 8:variance(</td>
</tr>
<tr>
<td>Vertical x</td>
<td>Draws a vertical line at x.</td>
<td>[2nd] [DRAW] DRAW 4:Vertical</td>
</tr>
<tr>
<td>vwAxes</td>
<td>Sets sequence graphs to plot $v(n)$ on the x-axis and $w(n)$ on the y-axis.</td>
<td>[2nd] [FORMAT] vw</td>
</tr>
<tr>
<td>Web</td>
<td>Sets sequence graphs to trace as webs.</td>
<td>[2nd] [FORMAT] Web</td>
</tr>
<tr>
<td>:While condition ;commands ;End ;command</td>
<td>Executes commands while condition is true.</td>
<td>[PRGM] CTL 5:While</td>
</tr>
<tr>
<td>valueA xor valueB</td>
<td>Returns 1 if only valueA or valueB = 0. valueA and valueB can be real numbers, expressions, or lists.</td>
<td>[2nd] [TEST] LOGIC 3:xor</td>
</tr>
<tr>
<td>ZBox</td>
<td>Displays a graph, lets you draw a box that defines a new viewing window, and updates the window.</td>
<td>[ZOOM] 1:ZBox</td>
</tr>
<tr>
<td>ZDecimal</td>
<td>Adjusts the viewing window so that $\Delta X=0.1$ and $\Delta Y=0.1$, and displays the graph screen with the origin centered on the screen.</td>
<td>[ZOOM] 4:ZDecimal</td>
</tr>
<tr>
<td>ZFrac 1/2</td>
<td>Sets the window variables so that you can trace in increments of $\frac{1}{2}$, if possible. Sets ΔX and ΔY to $\frac{1}{2}$.</td>
<td>[ZOOM] B:ZFrac1/2</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>ZFrac 1/3</td>
<td>Sets the window variables so that you can trace in increments of (\frac{1}{3}), if possible. Sets (\Delta X) and (\Delta Y) to (\frac{1}{3}).</td>
<td>(\text{ZOOM}) (\text{C:ZFrac1/3})</td>
</tr>
<tr>
<td>ZFrac 1/4</td>
<td>Sets the window variables so that you can trace in increments of (\frac{1}{4}), if possible. Sets (\Delta X) and (\Delta Y) to (\frac{1}{4}).</td>
<td>(\text{ZOOM}) (\text{D:ZFrac1/4})</td>
</tr>
<tr>
<td>ZFrac 1/5</td>
<td>Sets the window variables so that you can trace in increments of (\frac{1}{5}), if possible. Sets (\Delta X) and (\Delta Y) to (\frac{1}{5}).</td>
<td>(\text{ZOOM}) (\text{E:ZFrac1/5})</td>
</tr>
<tr>
<td>ZFrac 1/8</td>
<td>Sets the window variables so that you can trace in increments of (\frac{1}{8}), if possible. Sets (\Delta X) and (\Delta Y) to (\frac{1}{8}).</td>
<td>(\text{ZOOM}) (\text{F:ZFrac1/8})</td>
</tr>
<tr>
<td>ZFrac 1/10</td>
<td>Sets the window variables so that you can trace in increments of (\frac{1}{10}), if possible. Sets (\Delta X) and (\Delta Y) to (\frac{1}{10}).</td>
<td>(\text{ZOOM}) (\text{G:ZFrac1/10})</td>
</tr>
<tr>
<td>ZInteger</td>
<td>Redefines the viewing window using these dimensions: (\Delta X=1) (\Delta Y=1) (\text{Xscl}=10) (\text{Yscl}=10).</td>
<td>(\dagger) (\text{ZOOM}) (\text{8:ZInteger})</td>
</tr>
<tr>
<td>ZInterval (\sigma),(\bar{x},n) [(\text{listname}),(\text{freqlist}),(\text{confidence level})] (Data list input)</td>
<td>Computes a (z) confidence interval.</td>
<td>(\dagger) (\text{STAT}) (\text{TESTS}) (\text{7:ZInterval})</td>
</tr>
<tr>
<td>ZInterval (\sigma),(\bar{x},n) [(\text{confidence level})] (Summary stats input)</td>
<td>Computes a (z) confidence interval.</td>
<td>(\dagger) (\text{STAT}) (\text{TESTS}) (\text{7:ZInterval})</td>
</tr>
<tr>
<td>Zoom In</td>
<td>Magnifies the part of the graph that surrounds the cursor location.</td>
<td>(\dagger) (\text{ZOOM}) (\text{2:Zoom In})</td>
</tr>
<tr>
<td>Zoom Out</td>
<td>Displays a greater portion of the graph, centered on the cursor location.</td>
<td>(\dagger) (\text{ZOOM}) (\text{3:Zoom Out})</td>
</tr>
<tr>
<td>ZoomFit</td>
<td>Recalculates (Y_{\text{min}}) and (Y_{\text{max}}) to include the minimum and maximum (Y) values, between (X_{\text{min}}) and (X_{\text{max}}), of the selected functions and replots the functions.</td>
<td>(\dagger) (\text{ZOOM}) (\text{0:ZoomFit})</td>
</tr>
<tr>
<td>ZoomRcl</td>
<td>Graphs the selected functions in a user-defined viewing window.</td>
<td>(\dagger) (\text{ZOOM}) (\text{MEMORY}) (\text{3:ZoomRcl})</td>
</tr>
<tr>
<td>ZoomStat</td>
<td>Redefines the viewing window so that all statistical data points are displayed.</td>
<td>(\dagger) (\text{ZOOM}) (\text{9:ZoomStat})</td>
</tr>
<tr>
<td>ZoomSto</td>
<td>Immediately stores the current viewing window.</td>
<td>(\dagger) (\text{ZOOM}) (\text{MEMORY}) (\text{2:ZoomSto})</td>
</tr>
</tbody>
</table>
Appendix A: Functions and Instructions

<table>
<thead>
<tr>
<th>Function or Instruction</th>
<th>Arguments</th>
<th>Result</th>
<th>Key or Keys/Menu or Screen/Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPrevious</td>
<td></td>
<td>Replots the graph using the window variables of the graph that was displayed before you executed the last ZOOM instruction.</td>
<td>† [ZOOM] MEMORY 1:ZPrevious</td>
</tr>
<tr>
<td>ZQuadrant1</td>
<td></td>
<td>Displays the portion of the graph that is in quadrant 1.</td>
<td>[ZOOM] ZPrevious</td>
</tr>
<tr>
<td>ZSquare</td>
<td></td>
<td>Adjusts the X or Y window settings so that each pixel represents an equal width and height in the coordinate system, and updates the viewing window.</td>
<td>† [ZOOM] ZPrevious</td>
</tr>
<tr>
<td>ZStandard</td>
<td></td>
<td>Replots the functions immediately, updating the window variables to the default values.</td>
<td>† [ZOOM] ZPrevious</td>
</tr>
<tr>
<td>Z-Test(µ,σ,listname, freqlist,alternative, drawflag)</td>
<td>(Data list input)</td>
<td>Performs a z test with frequency freqlist. alternative=−1 is <; alternative=0 is ≠; alternative=1 is >. drawflag=1 draws results; drawflag=0 calculates results.</td>
<td>† [STAT] TESTS 1:Z-Test(</td>
</tr>
<tr>
<td>Z-Test(µ,σ,mean,n)</td>
<td>(Summary stats input)</td>
<td>Performs a z test. alternative=−1 is <; alternative=0 is ≠; alternative=1 is >. drawflag=1 draws results; drawflag=0 calculates results.</td>
<td>† [STAT] TESTS 1:Z-Test(</td>
</tr>
<tr>
<td>ZTrig</td>
<td></td>
<td>Replots the functions immediately, updating the window variables to preset values for plotting trig functions.</td>
<td>† [ZOOM] ZPrevious</td>
</tr>
<tr>
<td>Factorial: value!</td>
<td></td>
<td>Returns factorial of value.</td>
<td>[MATH] PRB 4:!</td>
</tr>
<tr>
<td>Factorial: list!</td>
<td></td>
<td>Returns factorial of list elements.</td>
<td>[MATH] PRB 4:!</td>
</tr>
<tr>
<td>Degrees notation: value°</td>
<td></td>
<td>Interprets value as degrees; designates degrees in DMS format.</td>
<td>2nd [ANGLE] ANGLE 1:°</td>
</tr>
<tr>
<td>Radian: angle°</td>
<td></td>
<td>Interprets angle as radians.</td>
<td>2nd [ANGLE] ANGLE 3:°</td>
</tr>
<tr>
<td>Transpose: matrix^T</td>
<td></td>
<td>Returns a matrix in which each element (row, column) is swapped with the corresponding element (column, row) of matrix.</td>
<td>2nd [MATRIX] MATH 2:T</td>
</tr>
<tr>
<td>x(^{th}) root (x\sqrt{value})</td>
<td></td>
<td>Returns (x^{th}) root of value.</td>
<td>[MATH] MATH 5:x(^{th})</td>
</tr>
<tr>
<td>x(^{th}) root (x\sqrt{list})</td>
<td></td>
<td>Returns (x^{th}) root of list elements.</td>
<td>[MATH] MATH 5:x(^{th})</td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>(\text{list}^\sqrt[n]{\text{value}})</td>
<td>Returns list roots of (\text{value}).</td>
<td>(\text{MATH}) (5: \sqrt{})</td>
<td></td>
</tr>
<tr>
<td>(\text{list}^A \sqrt[\text{list}B]{})</td>
<td>Returns (\text{list}) roots of (\text{list}B).</td>
<td>(\text{MATH}) (5: \sqrt{})</td>
<td></td>
</tr>
<tr>
<td>(\text{Cube: } \text{value}^3)</td>
<td>Returns the cube of a real or complex number, expression, list, or square matrix.</td>
<td>(\text{MATH}) (3: \text{^3})</td>
<td></td>
</tr>
<tr>
<td>(\text{Cube root: } 3\sqrt[3]{(\text{value})})</td>
<td>Returns the cube root of a real or complex number, expression, or list.</td>
<td>(\text{MATH}) (4: \sqrt[3]{{})</td>
<td></td>
</tr>
<tr>
<td>(\text{Equal: } \text{value}A = \text{value}B)</td>
<td>Returns 1 if (\text{value}A = \text{value}B). Returns 0 if (\text{value}A \neq \text{value}B). (\text{value}A) and (\text{value}B) can be real or complex numbers, expressions, lists, or matrices.</td>
<td>(\text{2nd}) (\text{TEST}) 1:=</td>
<td></td>
</tr>
<tr>
<td>(\text{Not equal: } \text{value}A \neq \text{value}B)</td>
<td>Returns 1 if (\text{value}A \neq \text{value}B). Returns 0 if (\text{value}A = \text{value}B). (\text{value}A) and (\text{value}B) can be real or complex numbers, expressions, lists, or matrices.</td>
<td>(\text{2nd}) (\text{TEST}) 2:=</td>
<td></td>
</tr>
<tr>
<td>(\text{Less than: } \text{value}A < \text{value}B)</td>
<td>Returns 1 if (\text{value}A < \text{value}B). Returns 0 if (\text{value}A \geq \text{value}B). (\text{value}A) and (\text{value}B) can be real or complex numbers, expressions, or lists.</td>
<td>(\text{2nd}) (\text{TEST}) 5:<</td>
<td></td>
</tr>
<tr>
<td>(\text{Greater than: } \text{value}A > \text{value}B)</td>
<td>Returns 1 if (\text{value}A > \text{value}B). Returns 0 if (\text{value}A \leq \text{value}B). (\text{value}A) and (\text{value}B) can be real or complex numbers, expressions, or lists.</td>
<td>(\text{2nd}) (\text{TEST}) 3:></td>
<td></td>
</tr>
<tr>
<td>(\text{Less than or equal: } \text{value}A \leq \text{value}B)</td>
<td>Returns 1 if (\text{value}A \leq \text{value}B). Returns 0 if (\text{value}A > \text{value}B). (\text{value}A) and (\text{value}B) can be real or complex numbers, expressions, or lists.</td>
<td>(\text{2nd}) (\text{TEST}) 6:<</td>
<td></td>
</tr>
<tr>
<td>(\text{Greater than or equal: } \text{value}A \geq \text{value}B)</td>
<td>Returns 1 if (\text{value}A \geq \text{value}B). Returns 0 if (\text{value}A < \text{value}B). (\text{value}A) and (\text{value}B) can be real or complex numbers, expressions, or lists.</td>
<td>(\text{2nd}) (\text{TEST}) 4:≥</td>
<td></td>
</tr>
<tr>
<td>(\text{Inverse: } \text{value}^{-1})</td>
<td>Returns 1 divided by a real or complex number or expression.</td>
<td>(\text{x}^{-1})</td>
<td></td>
</tr>
<tr>
<td>(\text{Inverse: } \text{list}^{-1})</td>
<td>Returns 1 divided by (\text{list}) elements.</td>
<td>(\text{x}^{-1})</td>
<td></td>
</tr>
<tr>
<td>(\text{Inverse: } \text{matrix}^{-1})</td>
<td>Returns (\text{matrix}) inverted.</td>
<td>(\text{x}^{-1})</td>
<td></td>
</tr>
<tr>
<td>(\text{Square: } \text{value}^2)</td>
<td>Returns (\text{value}) multiplied by itself. (\text{value}) can be a real or complex number or expression.</td>
<td>(\text{\text{x}^2})</td>
<td></td>
</tr>
<tr>
<td>(\text{Square: } \text{list}^2)</td>
<td>Returns (\text{list}) elements squared.</td>
<td>(\text{\text{x}^2})</td>
<td></td>
</tr>
<tr>
<td>(\text{Square: } \text{matrix}^2)</td>
<td>Returns (\text{matrix}) multiplied by itself.</td>
<td>(\text{\text{x}^2})</td>
<td></td>
</tr>
<tr>
<td>(\text{Powers: } \text{value}^{\text{power}})</td>
<td>Returns (\text{value}) raised to (\text{power}). (\text{value}) can be a real or complex number or expression.</td>
<td>(\text{\text{x}^{\text{\text{power}}}})</td>
<td></td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>Powers: list^power</td>
<td>Returns list elements raised to power.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powers: value^list</td>
<td>Returns value raised to list elements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powers: matrix^power</td>
<td>Returns matrix elements raised to power.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negation: -value</td>
<td>Returns the negative of a real or complex number, expression, list, or matrix.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power of ten: 10^(value)</td>
<td>Returns 10 raised to the value power. value can be a real or complex number or expression.</td>
<td>[2nd] [10^x]</td>
<td></td>
</tr>
<tr>
<td>Power of ten: 10^(list)</td>
<td>Returns a list of 10 raised to the list power.</td>
<td>[2nd] [10^x]</td>
<td></td>
</tr>
<tr>
<td>Square root: (\sqrt{(value)})</td>
<td>Returns square root of a real or complex number, expression, or list.</td>
<td>[2nd] [√]</td>
<td></td>
</tr>
<tr>
<td>Multiplication: valueA*valueB</td>
<td>Returns valueA times valueB.</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Multiplication: value*list</td>
<td>Returns value times each list element.</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Multiplication: list*value</td>
<td>Returns each list element times value.</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Multiplication: listA*listB</td>
<td>Returns listA elements times listB elements.</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Multiplication: value*matrix</td>
<td>Returns value times matrix elements.</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Multiplication: matrixA*matrixB</td>
<td>Returns matrixA times matrixB.</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Division: valueA/valueB</td>
<td>Returns valueA divided by valueB.</td>
<td>÷</td>
<td></td>
</tr>
<tr>
<td>Division: list/value</td>
<td>Returns list elements divided by value.</td>
<td>÷</td>
<td></td>
</tr>
<tr>
<td>Division: value/list</td>
<td>Returns value divided by list elements.</td>
<td>÷</td>
<td></td>
</tr>
<tr>
<td>Division: listA/listB</td>
<td>Returns listA elements divided by listB elements.</td>
<td>÷</td>
<td></td>
</tr>
<tr>
<td>Addition: valueA+valueB</td>
<td>Returns valueA plus valueB.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Addition: list+value</td>
<td>Returns list in which value is added to each list element.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Addition: listA+listB</td>
<td>Returns listA elements plus listB elements.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Concatenation: stringA+string2</td>
<td>Concatenates two or more strings.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Subtraction: valueA-valueB</td>
<td>Subtracts valueB from valueA.</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>Subtraction: value-list</td>
<td>Subtracts list elements from value.</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>Function or Instruction/Arguments</td>
<td>Result</td>
<td>Key or Keys/Menu or Screen/Item</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>Subtraction: list=value</td>
<td>Subtracts value from list elements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtraction: listA=listB</td>
<td>Subtracts listB elements from listA elements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtraction: matrixA=matrixB</td>
<td>Subtracts matrixB elements from matrixA elements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minutes notation:degrees°minutes'seconds"</td>
<td>Interprets minutes angle measurement as minutes.</td>
<td>2nd [ANGLE] ANGLE 2:"</td>
<td></td>
</tr>
<tr>
<td>Seconds notation:degrees°minutes'seconds"</td>
<td>Interprets seconds angle measurement as seconds.</td>
<td>ALPHA "</td>
<td></td>
</tr>
</tbody>
</table>
Variables

User Variables

The TI-84 Plus uses the variables listed below in various ways. Some variables are restricted to specific data types.

The variables A through Z and θ are defined as real or complex numbers. You may store to them. The TI-84 Plus can update X, Y, R, θ, and T during graphing, so you may want to avoid using these variables to store nongraphing data.

The variables (list names) L1 through L6 are restricted to lists; you cannot store another type of data to them.

The variables (matrix names) [A] through [J] are restricted to matrices; you cannot store another type of data to them.

The variables Pic1 through Pic9 and Pic0 are restricted to pictures; you cannot store another type of data to them.

The variables GDB1 through GDB9 and GDB0 are restricted to graph databases; you cannot store another type of data to them.

The variables Str1 through Str9 and Str0 are restricted to strings; you cannot store another type of data to them.

Except for system variables, you can store any string of characters, functions, instructions, or variables to the functions Yₙ, (1 through 9, and 0), XᵣT/YᵣT (1 through 6), tₙ (1 through 6), uᵣₙ, vᵣₙ, and wᵣₙ directly or through the Y= editor. The validity of the string is determined when the function is evaluated.

Archive Variables

You can store data, programs or any variable from RAM to user data archive memory where they cannot be edited or deleted inadvertently. Archiving also allows you to free up RAM for variables that may require additional memory. The names of archived variables are preceded by an asterisk (*) indicating they are in user data archive.

System Variables

The variables below must be real numbers. You may store to them. Since the TI-84 Plus can update some of them, as the result of a ZOOM, for example, you may want to avoid using these variables to store nongraphing data.

• Xmin, Xmax, Xscl, DX, XFact, Tstep, PlotStart, nMin, and other window variables.
• ZXmin, ZXmax, ZXscl, ZTstep, ZPlotStart, Zu(nMin), and other ZOOM variables.

The variables below are reserved for use by the TI-84 Plus. You cannot store to them.

n, \bar{x}, Sx, cx, minX, maxX, Gy, \sum y^2, \sum xy, a, b, c, RegEQ, x1, x2, y1, z, t, F, \chi^2, \hat{\beta}, \bar{x}1, Sx1, n1, lower, upper, r^2, R^2 and other statistical variables.

Statistics Formulas

This section contains statistics formulas for the Logistic and SinReg regressions, ANOVA, 2-Samp\textit{F}Test, and 2-Samp\textit{T}Test.

Logistic

The logistic regression algorithm applies nonlinear recursive least-squares techniques to optimize the following cost function:

\[J = \sum_{i=1}^{N} \left(\frac{c}{1 + ae^{-bx_i}} - y_i \right)^2 \]

which is the sum of the squares of the residual errors,

where: \(x \) = the independent variable list \(y \) = the dependent variable list \(N \) = the dimension of the lists

This technique attempts to estimate the constants \(a \), \(b \), and \(c \) recursively to make \(J \) as small as possible.

SinReg

The sine regression algorithm applies nonlinear recursive least-squares techniques to optimize the following cost function:

\[J = \sum_{i=1}^{N} \left[a\sin(bx_i + c) + d - y_i \right]^2 \]

which is the sum of the squares of the residual errors,

where: \(x \) = the independent variable list \(y \) = the dependent variable list \(N \) = the dimension of the lists

This technique attempts to recursively estimate the constants \(a \), \(b \), \(c \), and \(d \) to make \(J \) as small as possible.
ANOVA(1)

The ANOVA F statistic is:

\[F = \frac{\text{FactorMS}}{\text{ErrorMS}} \]

The mean squares (MS) that make up F are:

\[\text{FactorMS} = \frac{\text{FactorSS}}{\text{Factordf}} \]

\[\text{ErrorMS} = \frac{\text{ErrorSS}}{\text{Errordf}} \]

The sum of squares (SS) that make up the mean squares are:

\[\text{FactorSS} = \sum_{i=1}^{I} n_i(\bar{x}_i - \bar{x})^2 \]

\[\text{ErrorSS} = \sum_{i=1}^{I} (n_i-1)Sx_i^2 \]

The degrees of freedom df that make up the mean squares are:

\[\text{Factordf} = I - 1 = \text{numeratordf for F} \]

\[\text{Errordf} = \sum_{i=1}^{I} (n_i - 1) = \text{denominatordf for F} \]

where:
- \(I \) = number of populations
- \(\bar{x}_i \) = the mean of each list
- \(Sx_i \) = the standard deviation of each list
- \(ni \) = the length of each list
- \(\bar{x} \) = the mean of all lists

2-SampFTest

Below is the definition for the 2-SampFTest.

\[Sx_1, Sx_2 = \text{Sample standard deviations having } n_1 - 1 \] and \(n_2 - 1 \) degrees of freedom \(df_i \), respectively.

\[F' = F\text{-statistic} = \left(\frac{Sx_1}{Sx_2} \right)^2 \]
\[df(x, n_1-1, n_2-1) = F_{pdf}() \text{ with degrees of freedom } df, n_1-1, \text{ and } n_2-1 \]

\[p = \text{ reported } p \text{ value} \]

2-SampFTest for the alternative hypothesis \(\sigma_1 > \sigma_2 \).

\[p = \int_{F}^{\infty} f(x, n_1-1, n_2-1) \, dx \]

2-SampFTest for the alternative hypothesis \(\sigma_1 < \sigma_2 \).

\[p = \int_{0}^{F} f(x, n_1-1, n_2-1) \, dx \]

2-SampFTest for the alternative hypothesis \(\sigma_1 \neq \sigma_2 \). Limits must satisfy the following:

\[\frac{P}{2} = \int_{0}^{L_{bnd}} f(x,n_1-1,n_2-1) \, dx = \int_{0}^{U_{bnd}} f(x,n_1-1,n_2-1) \, dx \]

where: \([L_{bnd},U_{bnd}] \) = lower and upper limits

The F-statistic is used as the bound producing the smallest integral. The remaining bound is selected to achieve the preceding integral’s equality relationship.

2-SampTTest

The following is the definition for the **2-SampTTest**. The two-sample \(t \) statistic with degrees of freedom \(df \) is:

\[t = \frac{\bar{x}_1 - \bar{x}_2}{S} \]

where the computation of \(S \) and \(df \) are dependent on whether the variances are pooled. If the variances are not pooled:

\[S = \sqrt{\frac{Sx_1^2}{n_1} + \frac{Sx_2^2}{n_2}} \]

\[df = \frac{\frac{1}{n_1-1} \left(\frac{Sx_1^2}{n_1} \right)^2 + \frac{1}{n_2-1} \left(\frac{Sx_2^2}{n_2} \right)^2}{\left(\frac{Sx_1^2}{n_1} \right)^2 + \left(\frac{Sx_2^2}{n_2} \right)^2} \]
otherwise:

\[
S_{xp} = \frac{(n_1 - 1)Sx_1^2 + (n_2 - 1)Sx_2^2}{df}
\]

\[
S = \sqrt{\frac{1}{n_1} + \frac{1}{n_2}S_{xp}}
\]

\[
df = n_1 + n_2 - 2
\]

and \(S_{xp} \) is the pooled variance.

financial formulas

This section contains financial formulas for computing time value of money, amortization, cash flow, interest-rate conversions, and days between dates.

Time Value of Money

\[
i = [e^{(y \times \ln(x + 1))}]^{-1}
\]

where \(PMT \neq 0 \)

\[
y = \frac{C/Y}{P/Y}
\]

\[
x = (0.01 \times I\%) \div C/Y
\]

\(C/Y = \) compounding periods per year

\(P/Y = \) payment periods per year

\(I\% = \) interest rate per year

\[
i = (-FV \div PV)^{(1 + N)} - 1
\]

where \(PMT = 0 \)
The iteration used to compute i:

$$0 = PV + PMT \cdot G_i \left[\frac{1 - (1 + i)^{-N}}{i} \right] + FV \times (1 + i)^{-N}$$

$$P\% = 100 \times \frac{C/Y \times [e^{(y \times \ln(x + 1))} - 1]}{x - i}$$

where: $x = i$

$y = P/Y \div C/Y$

$G_i = 1 + i \times k$

where: $k = 0$ for end-of-period payments

$k = 1$ for beginning-of-period payments

$$N = \ln \left(\frac{PMT \times G_i - FV \times i}{PMT \times G_i + PV \times i} \right)$$

$$\ln \left(\frac{PMT \times G_i - FV \times i}{PMT \times G_i + PV \times i} \right)$$

where: $i \neq 0$

$$N = -(PV + FV) \div PMT$$

where: $i = 0$

$$PMT = \frac{i}{G_i} \times \left[PV + \frac{PV + FV}{(1 + i)^N - 1} \right]$$

where: $i \neq 0$

$$PMT = -(PV + FV) \div N$$

where: $i = 0$

$$PV = \left[\frac{PMT \times G_i}{i} - FV \right] \times \frac{1}{(1 + i)^N} - \frac{PMT \times G_i}{i}$$

where: $i \neq 0$

$$PV = -(FV + PMT \times N)$$

where: $i = 0$

$$FV = \left[\frac{PMT \times G_i}{i} \right] - (1 + i)^N \times \left(PV + \frac{PMT \times G_i}{i} \right)$$
where: \(i \neq 0 \)

\[FV = -(PV + PMT \times N) \]

where: \(i = 0 \)

Amortization

If computing \(bal() \), \(pmt2 = npmt \)

Let \(bal(0) = RND(PV) \)

Iterate from \(m = 1 \) to \(pmt2 \)

\[
\begin{align*}
1_m &= RND[RND12(-i \times bal(m - 1))] \\
bal(m) &= bal(m - 1) - 1_m + RND(PMT)
\end{align*}
\]

then:

\[
\begin{align*}
bal() &= bal(pmt2) \\
\Sigma Prn() &= bal(pmt2) - bal(pmt1) \\
\Sigma Int() &= (pmt2 - pmt1 + 1) \times RND(PMT) - \Sigma Prn()
\end{align*}
\]

where: \(RND \) = round the display to the number of decimal places selected

\(RND12 \) = round to 12 decimal places

Balance, principal, and interest are dependent on the values of \(PMT, PV, I\%, \) and \(pmt1 \) and \(pmt2 \).

Cash Flow

\[
npv() = CF_0 + \sum_{j=1}^{N} CF_j \left((1 + i)^{-j-1} \cdot \frac{1-(1+i)^{-n_j}}{i} \right)
\]

where: \(S_j = \begin{cases}
\sum_{i=1}^{j} n_i & \text{for } j \geq 1 \\
0 & \text{for } j = 0
\end{cases} \)

Net present value is dependent on the values of the initial cash flow \((CF_0) \), subsequent cash flows \((CF_j) \), frequency of each cash flow \((n_j) \), and the specified interest rate \((i) \).

\[
irr() = 100 \times i, \text{ where } i \text{ satisfies } npv() = 0
\]
Internal rate of return is dependent on the values of the initial cash flow (CF_0) and subsequent cash flows (CF_j).

\[i = i\% \div 100 \]

Interest Rate Conversions

\[
\text{Eff} = 100 \times (e^{CP \times \ln(x+1)} - 1)
\]

where: \(x = 0.01 \times \text{Nom} \div CP \)

\[
\text{Nom} = 100 \times CP \times [e^{1 + CP \times \ln(x+1)} - 1]
\]

where: \(x = 0.01 \times \text{Eff} \)

\(\text{Eff} \) = effective rate

\(CP \) = compounding periods

\(\text{Nom} \) = nominal rate

Days between Dates

With the \text{dbd} function, you can enter or compute a date within the range Jan. 1, 1950, through Dec. 31, 2049.

Actual/actual day-count method (assumes actual number of days per month and actual number of days per year):

\[
\text{dbd}((\text{days between dates}) = \text{Number of Days II} - \text{Number of Days I})
\]

\[
\text{Number of Days I} = (Y1 - YB) \times 365 + (\text{number of days MB to M1}) + DT1 + \frac{(Y1 - YB)}{4}
\]

\[
\text{Number of Days II} = (Y2 - YB) \times 365 + (\text{number of days MB to M2}) + DT2 + \frac{(Y2 - YB)}{4}
\]
Important Things You Need to Know About Your TI-84 Plus

TI-84 Plus Results

There may be a number of reasons that your TI-84 Plus is not displaying the expected results; however, the most common solutions involve order of operations or mode settings. Your calculator uses an Equation Operating System™ (EOS™) which evaluates the functions in an expression in the following order:

1. Functions that precede the argument, such as square root, sin(, or log(
2. Functions that are entered after the argument, such as exponents, factorial, r, \(^\circ\), and conversions
3. Powers and roots, such as 2\(^5\), or 5*square root(32)
4. Permutations (nPr) and combinations (nCr)
5. Multiplication, implied multiplication, and division
6. Addition and subtraction
7. Relational functions, such as > or <
8. Logic operator and
9. Logic operators or and xor

Remember that EOS™ evaluates from left to right and calculations within parentheses are evaluated first. You should use parentheses where the rules of algebra may not be clear. In OS 2.53 MP, parentheses may be pasted in an expression to indicate how the input is interpreted.

If you are using trigonometric functions or performing polar and rectangular conversions, the unexpected results may be caused by an angle mode setting. The Radian and Degree angle mode settings control how the TI-84 Plus interprets angle values.

To change the angle mode settings, follow these steps:

1. Press MODE to display the Mode settings.
2. Select Degree or Radian.
3. Press ENTER to save the angle mode setting.
ERR:DIM MISMATCH Error

Your TI-84 Plus displays the ERR:DIM MISMATCH error if you are trying to perform an operation that references one or more lists or matrices whose dimensions do not match. For example, multiplying L1*L2, where L1={1,2,3,4,5} and L2={1,2} produces an ERR:DIM MISMATCH error because the number of elements in L1 and L2 do not match.

ERR:INVALID DIM Error

The ERR:INVALID DIM error message may occur if you are trying to graph a function that does not involve the stat plot features. The error can be corrected by turning off the stat plots. To turn the stat plots off, press [2nd] [STAT PLOT] and then select 4:PlotsOff.

Link-Receive L1 (or any file) to Restore Message

Your TI-84 Plus displays the Link-Receive L1 (or any file) to Restore message if it has been disabled for testing, and not re-enabled. To restore your calculator to full functionality after testing, link to another TI-84 Plus and transfer any file to the disabled calculator, or use TI Connect™ software to download a file from your computer to your TI-84 Plus.

To transfer a file from another TI-84 Plus:

1. On the receiving unit, press [2nd] [LINK] and then select RECEIVE.
2. On the sending calculator, press [2nd] [LINK].
3. Select a file to send by selecting a category, and then selecting a file to send.
4. Select TRANSMIT to send the file.

Contrast Feature

If the contrast setting is too dark (set to 9) or too dim (set to 0) the unit may appear as if it is malfunctioning or turned off. To adjust the contrast, press and release [2nd], and then press and hold † or ‡.
TI-84 Plus Identification Code

Your graphing calculator has a unique identification (ID) code that you should record and keep. You can use this 14 digit ID to register your calculator at education.ti.com or identify your calculator in the event that it is lost or stolen. A valid ID includes numbers 0 through 9 and the letters A through F.

You can view the calculator’s Operating System, Product Number, ID, and Certificate Revision Number from the About screen. To display the About screen, press `[2nd] [MEM]` and then select `1:About`.

Your unique product ID code: _____________________________

Backups

Your TI-84 Plus is similar to a computer, in that it stores files and Apps that are important to you. It is always a good idea to back up your graphing calculator device files and Apps using the TI Connect™ software and a USB computer cable. You can find the specific procedures for backing up your calculator’s device files and Apps in the TI Connect™ Help file.

Apps

TI-84 Plus Software Applications (Apps) is software that you can add to your calculator in the same way you would add software to your computer. Apps let you customize your calculator for peak performance in specific areas of study. You can find apps for the TI-84 Plus at education.ti.com.

TI-Cares KnowledgeBase

The TI-Cares KnowledgeBase provides 24-hour access through the Web to find answers to frequently asked questions. The TI-Cares KnowledgeBase searches its repository of known solutions and presents you with the solutions that are most likely to solve your problem. You can search the TI-Cares KnowledgeBase at education.ti.com/support.
Error Conditions

When the TI-84 Plus detects an error, it returns an error message as a menu title, such as **ERR:SYNTAX** or **ERR:DOMAIN**. This table contains each error type, possible causes, and suggestions for correction. The error types listed in this table are each preceded by **ERR:** on your graphing calculator display. For example, you will see **ERR:ARCHIVED** as a menu title when your graphing calculator detects an **ARCHIVED** error type.

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Possible Causes and Suggested Remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCHIVED</td>
<td>You have attempted to use, edit, or delete an archived variable. For example, the expression <code>dim(L1)</code> produces an error if L1 is archived.</td>
</tr>
<tr>
<td>ARCHIVE FULL</td>
<td>You have attempted to archive a variable and there is not enough space in archive to receive it.</td>
</tr>
<tr>
<td>ARGUMENT</td>
<td>A function or instruction does not have the correct number of arguments. See Appendix A for function and instruction syntax. Appendix A displays the arguments and punctuation needed to execute the function or instruction. For example, <code>stdDev(list, freqlist)</code> is a function of the TI-84 Plus. The arguments are shown in italics. The arguments in brackets are optional and you need not type them. You must also be sure to separate multiple arguments with a comma (,). For example, <code>stdDev(list, freqlist)</code> might be entered as <code>stdDev(L1)</code> or <code>stdDev(L1, L2)</code> since the frequency list or <code>freqlist</code> is optional.</td>
</tr>
<tr>
<td>BAD ADDRESS</td>
<td>You have attempted to send or receive an application and an error (e.g. electrical interference) has occurred in the transmission.</td>
</tr>
<tr>
<td>BAD GUESS</td>
<td>• In a CALC operation, you specified a Guess that is not between Left Bound and Right Bound.</td>
</tr>
<tr>
<td></td>
<td>• For the <code>solve()</code> function or the equation solver, you specified a guess that is not between <code>lower</code> and <code>upper</code>.</td>
</tr>
<tr>
<td></td>
<td>• Your guess and several points around it are undefined. Examine a graph of the function. If the equation has a solution, change the bounds and/or the initial guess.</td>
</tr>
<tr>
<td>BOUND</td>
<td>• In a CALC operation or with Select(), you defined Left Bound > Right Bound.</td>
</tr>
<tr>
<td></td>
<td>• In <code>fMin()</code>, <code>fMax()</code>, <code>solve()</code>, or the equation solver, you entered <code>lower ≥ upper</code>.</td>
</tr>
<tr>
<td>BREAK</td>
<td>You pressed the ON key to break execution of a program, to halt a DRAW instruction, or to stop evaluation of an expression.</td>
</tr>
<tr>
<td>DATA TYPE</td>
<td>You entered a value or variable that is the wrong data type.</td>
</tr>
<tr>
<td></td>
<td>• For a function (including implied multiplication) or an instruction, you entered an argument that is an invalid data type, such as a complex number where a real number is required. See Appendix A and the appropriate chapter.</td>
</tr>
<tr>
<td></td>
<td>• In an editor, you entered a type that is not allowed, such as a matrix entered as an element in the stat list editor. See the appropriate chapter.</td>
</tr>
<tr>
<td>DIM MISMATCH</td>
<td>Your calculator displays the ERR:DIM MISMATCH error if you are trying to perform an operation that references one or more lists or matrices whose dimensions do not match. For example, multiplying <code>L1*L2</code>, where <code>L1={1,2,3,4,5}</code> and <code>L2={1,2}</code> produces an ERR:DIM MISMATCH error because the number of elements in L1 and L2 do not match.</td>
</tr>
</tbody>
</table>
Error Type | Possible Causes and Suggested Remedies
---|---
DIVIDE BY 0 | • You attempted to divide by zero. This error is not returned during graphing. The TI-84 Plus allows for undefined values on a graph.
• You attempted a linear regression with a vertical line.

DOMAIN | • You specified an argument to a function or instruction outside the valid range. This error is not returned during graphing. The TI-84 Plus allows for undefined values on a graph. See Appendix A.
• You attempted a logarithmic or power regression with a \(-X\) or an exponential or power regression with a \(-Y\).
• You attempted to compute \(\Sigma \text{Prn}\) or \(\Sigma \text{Int}\) with \(\text{pmtn}2 < \text{pmtn}1\).

DUPLICATE | You attempted to create a duplicate group name.

Duplicate Name | A variable you attempted to transmit cannot be transmitted because a variable with that name already exists in the receiving unit.

EXPIRED | You have attempted to run an application with a limited trial period which has expired.

Error in Xmit | • The TI-84 Plus was unable to transmit an item. Check to see that the cable is firmly connected to both units and that the receiving unit is in receive mode.
• You pressed \(\text{ON} \) to break during transmission.
• You attempted to perform a backup from a TI-82 to a TI-84 Plus.
• You attempted to transfer data (other than \(\text{L1} \) through \(\text{L6}\)) from a TI-84 Plus to a TI-82.
• You attempted to transfer \(\text{L1} \) through \(\text{L6}\) from a TI-84 Plus to a TI-82 without using 5:Lists to TI82 on the \text{LINK SEND} menu.

ID NOT FOUND | This error occurs when the SendID command is executed but the proper graphing calculator ID cannot be found.

ILLEGAL NEST | • You attempted to use an invalid function in an argument to a function, such as \(\text{seq}()\) within \(\text{expression} \) for \(\text{seq}()\).

INCREMENT | • The increment in \(\text{seq}()\) is 0 or has the wrong sign. This error is not returned during graphing. The TI-84 Plus allows for undefined values on a graph.
• The increment in a \(\text{For}\) loop is 0.

INVALID | • You attempted to reference a variable or use a function where it is not valid. For example, \(Y_n\) cannot reference \(Y, X\text{min}, \Delta X, \text{or TblStart}\).
• You attempted to reference a variable or function that was transferred from the TI-82 and is not valid for the TI-84 Plus For example, you may have transferred \(U_{n-1}\) to the TI-84 Plus from the TI-82 and then tried to reference it.
• In \(\text{Seq}\) mode, you attempted to graph a phase plot without defining both equations of the phase plot.
• In \(\text{Seq}\) mode, you attempted to graph a recursive sequence without having input the correct number of initial conditions.
• In \(\text{Seq}\) mode, you attempted to reference terms other than \((n-1)\) or \((n-2)\).
• You attempted to designate a graph style that is invalid within the current graph mode.
• You attempted to use \(\text{Select}\) without having selected (turned on) at least one \(\text{xyLine}\) or scatter plot.
<table>
<thead>
<tr>
<th>Error Type</th>
<th>Possible Causes and Suggested Remedies</th>
</tr>
</thead>
</table>
| INVALID DIM | • The ERR:INVALID DIM error message may occur if you are trying to graph a function that does not involve the stat plot features. The error can be corrected by turning off the stat plots. To turn the stat plots off, press `[2nd]` [STAT PLOT] and then select 4:PlotsOff.
 • You specified a list dimension as something other than an integer between 1 and 999.
 • You specified a matrix dimension as something other than an integer between 1 and 99.
 • You attempted to invert a matrix that is not square. |
| ITERATIONS | • The solve(function or the equation solver has exceeded the maximum number of permitted iterations. Examine a graph of the function. If the equation has a solution, change the bounds, or the initial guess, or both.
 • irr(has exceeded the maximum number of permitted iterations.
 • When computing %, the maximum number of iterations was exceeded. |
| LABEL | The label in the Goto instruction is not defined with a Lbl instruction in the program. |
| LINK L1 (or any other file) to Restore | The calculator has been disabled for testing. To restore full functionality, use TI Connect™ software to download a file to your calculator from your computer, or transfer any file to your calculator from another TI-84 Plus. (See the instructions under Important Things to Know about your TI-84 Plus, earlier in this chapter.) |
| MEMORY | Memory is insufficient to perform the instruction or function. You must delete items from memory before executing the instruction or function. Recursive problems return this error; for example, graphing the equation Y1=Y1.
 Branching out of an If/Then, For(, While, or Repeat loop with a Goto also can return this error because the End statement that terminates the loop is never reached. |
| MemoryFull | • You are unable to transmit an item because the receiving unit’s available memory is insufficient. You may skip the item or exit receive mode.
 • During a memory backup, the receiving unit’s available memory is insufficient to receive all items in the sending unit’s memory. A message indicates the number of bytes the sending unit must delete to do the memory backup. Delete items and try again. |
| MODE | You attempted to store to a window variable in another graphing mode or to perform an instruction while in the wrong mode; for example, DrawInv in a graphing mode other than Func. |
| NO SIGN CHNG | • The solve(function or the equation solver did not detect a sign change.
 • You attempted to compute % when FV, (N=PMT), and PV are all ≥ 0, or when FV, (N=PMT), and PV are all ≤ 0.
 • You attempted to compute irr(when neither CFList nor CFO is > 0, or when neither CFList nor CFO is < 0. |
| NONREAL ANS | In Real mode, the result of a calculation yielded a complex result. This error is not returned during graphing. The TI-84 Plus allows for undefined values on a graph. |
| OVERFLOW | You attempted to enter, or you have calculated, a number that is beyond the range of the graphing calculator. This error is not returned during graphing. The TI-84 Plus allows for undefined values on a graph. |

Appendix B: Reference Information 396
Reserved
You attempted to use a system variable inappropriately. See Appendix A.

Singular Mat
- A singular matrix (determinant = 0) is not valid as the argument for \(L_1 \).
- The `SinReg` instruction or a polynomial regression generated a singular matrix (determinant = 0) because it could not find a solution, or a solution does not exist.

This error is not returned during graphing. The TI-84 Plus allows for undefined values on a graph.

Singularity
expression in the `solve` function or the equation solver contains a singularity (a point at which the function is not defined). Examine a graph of the function. If the equation has a solution, change the bounds or the initial guess or both.

Stat
You attempted a stat calculation with lists that are not appropriate.
- Statistical analyses must have at least two data points.
- **Med-Med** must have at least three points in each partition.
- When you use a frequency list, its elements must be \(\geq 0 \).
- \((X_{\text{max}} - X_{\text{min}}) / X_{\text{scl}} \) must be \(\leq 47 \) for a histogram.

Stat Plot
You attempted to display a graph when a stat plot that uses an undefined list is turned on.

Syntax
The command contains a syntax error. Look for misplaced functions, arguments, parentheses, or commas. Appendix A displays the arguments and punctuation needed to execute the function or instruction. For example, `stdDev(list[,freqlist])` is a function of the TI-84 Plus. The arguments are shown in italics. The arguments in brackets are optional and you need not type them. You must also be sure to separate multiple arguments with a comma (,). For example `stdDev(list[,freqlist])` might be entered as `stdDev(L1)` or `stdDev(L1,L2)` since the frequency list or `freqlist` is optional.

TOL Not Met
You requested a tolerance to which the algorithm cannot return an accurate result.

Undefined
You referenced a variable that is not currently defined. For example, you referenced a stat variable when there is no current calculation because a list has been edited, or you referenced a variable when the variable is not valid for the current calculation, such as a `after Med-Med`.

Validation
Electrical interference caused a link to fail or this graphing calculator is not authorized to run the application.

Variable
You have tried to archive a variable that cannot be archived or you have tried to unarchive an application or group. Examples of variables that cannot be archived include:
- Real numbers \(L\text{RESID}, R, T, X, Y, \text{Theta} \), Statistic variables under `Vars`, `STATISTICS` menu, `Yvars`, and the `AppldList`.

Version
You have attempted to receive an incompatible variable version from another graphing calculator.
Accuracy Information

Computational Accuracy

To maximize accuracy, the TI-84 Plus carries more digits internally than it displays. Values are stored in memory using up to 14 digits with a two-digit exponent.

- You can store a value in the window variables using up to 10 digits (12 for \(X_{\text{Scl}}, Y_{\text{Scl}}, T_{\text{step}},\) and \(\theta_{\text{step}}\)).
- Displayed values are rounded as specified by the mode setting with a maximum of 10 digits and a two-digit exponent.
- \(\text{RegEQ}\) displays up to 14 digits in \(\text{Float}\) mode. Using a fixed-decimal setting other than \(\text{Float}\) causes \(\text{RegEQ}\) results to be rounded and stored with the specified number of decimal places.

\(X_{\text{min}}\) is the center of the leftmost pixel, \(X_{\text{max}}\) is the center of the next-to-the-rightmost pixel. (The rightmost pixel is reserved for the busy indicator.) \(\Delta X\) is the distance between the centers of two adjacent pixels.

- In \(\text{Full}\) screen mode, \(\Delta X\) is calculated as \((X_{\text{max}} - X_{\text{min}}) / 94.\) In \(\text{G-T}\) split-screen mode, \(\Delta X\) is calculated as \((X_{\text{max}} - X_{\text{min}}) / 46.\)
- If you enter a value for \(\Delta X\) from the home screen or a program in \(\text{Full}\) screen mode, \(X_{\text{max}}\) is calculated as \(X_{\text{min}} + \Delta X \times 94.\) In \(\text{G-T}\) split-screen mode, \(X_{\text{max}}\) is calculated as \(X_{\text{min}} + \Delta X \times 46.\)

\(Y_{\text{min}}\) is the center of the next-to-the-bottom pixel; \(Y_{\text{max}}\) is the center of the top pixel. \(\Delta Y\) is the distance between the centers of two adjacent pixels.

- In \(\text{Full}\) screen mode, \(\Delta Y\) is calculated as \((Y_{\text{max}} - Y_{\text{min}}) / 62.\) In \(\text{Horiz}\) split-screen mode, \(\Delta Y\) is calculated as \((Y_{\text{max}} - Y_{\text{min}}) / 30.\) In \(\text{G-T}\) split-screen mode, \(\Delta Y\) is calculated as \((Y_{\text{max}} - Y_{\text{min}}) / 50.\)
- If you enter a value for \(\Delta Y\) from the home screen or a program in \(\text{Full}\) screen mode, \(Y_{\text{max}}\) is calculated as \(Y_{\text{min}} + \Delta Y \times 62.\) In \(\text{Horiz}\) split-screen mode, \(Y_{\text{max}}\) is calculated as \(Y_{\text{min}} + \Delta Y \times 30.\) In \(\text{G-T}\) split-screen mode, \(Y_{\text{max}}\) is calculated as \(Y_{\text{min}} + \Delta Y \times 50.\)
Cursor coordinates are displayed as eight-character numbers (which may include a negative sign, decimal point, and exponent) when float mode is selected. X and Y are updated with a maximum accuracy of eight digits.

minimum and maximum on the calculate menu are calculated with a tolerance of 1e^-5; \(\int f(x) \, dx \) is calculated at 1e^-3. Therefore, the result displayed may not be accurate to all eight displayed digits. For most functions, at least five accurate digits exist. For fMin(), fMax(), and fnInt() on the Math menu and solve() in the catalog, the tolerance can be specified.

Function Limits

<table>
<thead>
<tr>
<th>Function</th>
<th>Range of Input Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin x, \cos x, \tan x)</td>
<td>(0 \leq</td>
</tr>
<tr>
<td>(\sin^{-1} x, \cos^{-1} x)</td>
<td>(-1 \leq x \leq 1)</td>
</tr>
<tr>
<td>(\ln x, \log x)</td>
<td>(10^{-100} < x < 10^{100})</td>
</tr>
<tr>
<td>(e^x)</td>
<td>(-10^{100} < x \leq 230.25850929940)</td>
</tr>
<tr>
<td>(10^x)</td>
<td>(-10^{100} < x < 100)</td>
</tr>
<tr>
<td>(\sinh x, \cosh x)</td>
<td>(</td>
</tr>
<tr>
<td>(\tanh x)</td>
<td>(</td>
</tr>
<tr>
<td>(\sinh^{-1} x)</td>
<td>(</td>
</tr>
<tr>
<td>(\cosh^{-1} x)</td>
<td>(1 \leq x < 5 \times 10^{99})</td>
</tr>
<tr>
<td>(\tanh^{-1} x)</td>
<td>(-1 < x < 1)</td>
</tr>
<tr>
<td>(\sqrt{x}) (real mode)</td>
<td>(0 \leq x < 10^{100})</td>
</tr>
<tr>
<td>(\sqrt{x}) (complex mode)</td>
<td>(</td>
</tr>
<tr>
<td>(x!)</td>
<td>(-.5 \leq x \leq 69), where (x) is a multiple of .5</td>
</tr>
</tbody>
</table>

Function Results

<table>
<thead>
<tr>
<th>Function</th>
<th>Range of Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin^{-1} x, \tan^{-1} x)</td>
<td>(-90^\circ) to (90^\circ) or (-\pi/2) to (\pi/2) (radians)</td>
</tr>
<tr>
<td>(\cos^{-1} x)</td>
<td>(0^\circ) to (180^\circ) or (0) to (\pi) (radians)</td>
</tr>
</tbody>
</table>
Appendix C:
Service and Warranty Information

Texas Instruments Support and Service

For general information

Home Page: education.ti.com
KnowledgeBase and e-mail inquiries: education.ti.com/support
Phone: (800) TI-CARES / (800) 842-2737
For U.S., Canada, Mexico, Puerto Rico, and Virgin Islands only
International information: education.ti.com/international

For product (hardware) service

Customers in the U.S., Canada, Mexico, Puerto Rico and Virgin Islands: Always contact Texas Instruments Customer Support before returning a product for service.

All other customers: Refer to the leaflet enclosed with this product (hardware) or contact your local Texas Instruments retailer/distributor.

Battery Information

When to Replace the Batteries

The TI-84 Plus uses five batteries: four AAA alkaline batteries and one button cell backup battery. The backup battery provides auxiliary power to retain memory while you replace the AAA batteries.

When the battery voltage level drops below a usable level, the TI-84 Plus:

Displays this message when you turn on the unit. Displays this message when you attempt to download an application.

<table>
<thead>
<tr>
<th>Message A</th>
<th>Message B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your batteries are low. Recommend change of batteries.</td>
<td>Batteries are low. Change is required.</td>
</tr>
</tbody>
</table>
After **Message A** is first displayed, you can expect the batteries to function for about one or two weeks, depending on usage. (This one-week to two-week period is based on tests with alkaline batteries; the performance of other types of batteries may vary.)

If **Message B** is displayed, you must replace the batteries immediately to successfully download an application.

Effects of Replacing the Batteries

Do not remove both types of batteries (AAA and backup) at the same time. **Do not** allow the batteries to lose power completely. If you follow these guidelines and the steps for replacing batteries, you can replace either type of battery without losing any information in memory.

Battery Precautions

Take these precautions when replacing batteries.

- Do not leave batteries within reach of children
- Do not mix new and used batteries. Do not mix brands (or types within brands) of batteries.
- Do not mix rechargeable and nonrechargeable batteries.
- Install batteries according to polarity (+ and −) diagrams.
- Do not place nonrechargeable batteries in a battery recharger.
- Properly dispose of used batteries immediately. Do not leave them within the reach of children.
- Do not incinerate or dismantle batteries.

Disposing of used batteries safely and properly

Do not mutilate, puncture, or dispose of batteries in fire. The batteries can burst or explode, releasing hazardous chemicals. Discard used batteries according to local regulations.

Replacing the Batteries

To replace the batteries, follow these steps.

1. Turn off the graphing calculator. Replace the slide cover over the keyboard to avoid inadvertently turning on the graphing calculator. Turn the back of the unit toward you.
2. Hold the graphing calculator upright, push downward on the latch on the top of the battery cover, and then pull the cover toward you.

 Note: To avoid loss of information stored in memory, you must turn off the graphing calculator. Do not remove the AAA batteries and the backup battery simultaneously.
3. Replace all four AAA alkaline batteries simultaneously. Or, replace the backup battery.

 - To replace the AAA alkaline batteries, remove all four discharged AAA batteries and install new ones according to the polarity (+ and −) diagram in the battery compartment.
• To replace the backup battery, remove the screw from the backup battery cover, and then remove the cover. Install the new battery, + side up. Replace the cover and secure it with the screw.

4. Replace the battery compartment cover. Turn the graphing calculator on and adjust the display contrast, if necessary, by pressing \textit{2nd} \(\uparrow \) or \(\downarrow \).

\textbf{In Case of Difficulty}

\textbf{Handling a Difficulty}

To handle a difficulty, follow these steps.

1. If you cannot see anything on the screen, you may need to adjust the graphing calculator contrast.

 To darken the screen, press \textit{and release} \textit{2nd}, and then press and hold \(\uparrow \) until the display is sufficiently dark.

 To lighten the screen, press \textit{and release} \textit{2nd}, and then press and hold \(\downarrow \) until the display is sufficiently light.

2. If an error menu is displayed, follow these steps:
 \begin{itemize}
 \item Note the error type (\textit{ERR: error type}).
 \item Select 2:GOTO, if it is available. The previous screen is displayed with the cursor at or near the error location.
 \item Determine the error.
 \item Correct the expression.
 \end{itemize}

 Refer to the Error Conditions table for details about specific errors, if necessary.

3. If the busy indicator (dotted line) is displayed, a graph or program has been paused; the TI-84 Plus is waiting for input. Press \textit{ENTER} to continue or press \textit{ON} to break.

4. If a checkerboard cursor (\(\# \)) is displayed, then either you have entered the maximum number of characters in a prompt, or memory is full. If memory is full:
 \begin{itemize}
 \item Press \textit{2nd} \textit{MEM} 2 to display the MEMORY MANAGEMENT / DELETE menu.
 \item Select the type of data you want to delete, or select 1:All for a list of all variables of all types. A screen is displayed listing each variable of the type you selected and the number of bytes each variable is using.
 \item Press \(\uparrow \) and \(\downarrow \) to move the selection cursor (\(\uparrow \)) next to the item you want to delete, and then press \textit{DEL}.\end{itemize}
5. If the graphing calculator does not seem to work at all, be sure the alkaline batteries are fresh and that they are installed properly.

6. If the TI-84 Plus does not function even though you are sure that the batteries are fresh, you can try manually resetting it.
 • Remove all of the AAA batteries from the graphing calculator.
 • Press and hold the \texttt{ON} key for ten seconds.
 • Replace the batteries.
 • Turn on the unit.

 When you reset your graphing calculator, the contrast sometimes changes. If the screen is faded or blank, adjust the contrast by pressing \texttt{2nd} and releasing \texttt{\downarrow} or \texttt{\uparrow}.

7. If the above solutions do not work you can reset all of the memory. The RAM, user data archive memory, and system variables are restored to factory settings when you reset all memory. All nonsystem variables, applications (Apps), and programs are deleted.
 • Press \texttt{2nd \ MEM} to display the \texttt{MEMORY} menu.
 • Select \texttt{7:Reset} to display the \texttt{RAM ARCHIVE ALL} menu.
 • Press \texttt{\uparrow \downarrow} to display the \texttt{ALL} menu.
 • Select \texttt{1:All Memory} to display the \texttt{RESET MEMORY} menu.
 • To continue with the reset, select \texttt{2:Reset}. The message \texttt{Mem cleared} is displayed on the home screen.
Symbols

\rightarrow \text{dim((assign dimension) 169}
\rightarrow \text{dim((assign dimension) 155, 358}
\rightarrow \text{not (not equal to) 380}
\rightarrow \text{sqrt (square root) 36, 381}
\rightarrow \text{plot type, histogram) 209}
\rightarrow \text{minutes notation) 60, 382}
\rightarrow \text{parentheses) 29}
\rightarrow \text{plot type, normal probability) 210}
\rightarrow \text{sum of interest) 363}
\rightarrow \text{sum of principal) 368}
\rightarrow \text{multiplication) 36, 381}
\rightarrow \text{plot type, modified box) 209}
\rightarrow \text{operation on a graph 90}
\rightarrow \text{row(160, 371}
\rightarrow \text{row+ 371}
\rightarrow \text{addition) 36, 381}
\rightarrow \text{concatenation) 270, 381}
\rightarrow \text{pixel mark) 132, 210}
\rightarrow \text{plot type, box) 209}
\rightarrow \text{division) 36, 381}
\rightarrow \text{inverse) 380}
\rightarrow \text{colon) 278}
\rightarrow \text{less than) 62, 380}
\rightarrow \text{equal-to relational test) 62, 380}
\rightarrow \text{greater than) 62, 380}
\rightarrow \text{matrix indicator) 148}
\rightarrow \text{power) 36, 380, 381}
\rightarrow \text{less than or equal to) 380}
\rightarrow \text{greater than or equal to) 62, 380}
\rightarrow \text{square) 36, 380}
\rightarrow \text{cube) 39, 380}
\rightarrow \text{cube root) 39, 380}
\rightarrow \text{string indicator) 267}
\rightarrow \text{decimal conversion) 39, 357}
\rightarrow \text{degrees/minutes/seconds) 61, 358}
\rightarrow \text{effective interest rate) 261}
\rightarrow \text{fraction) 39, 360}
\rightarrow \text{nominal interest rate) 261, 366}
\rightarrow \text{polar) 56, 368}
\rightarrow \text{rectangular) 56, 371}
\rightarrow \text{chi-square pdf) 244}
\rightarrow \text{chi-square test) 233, 234, 245}
\rightarrow \text{table step variable) 116}
\rightarrow \text{window variable 74}
\rightarrow \text{window variable 74}
\rightarrow \text{pdf(245}
\rightarrow \text{pdf(245}
\rightarrow \text{inverse) 37}
\rightarrow \text{list indicator) 163}

Numerics

10^{((power of ten) 381

1-\text{PropZInt (one-proportion \pm confidence interval) 232, 369}
1-\text{PropZTest (one-proportion \pm test) 227, 369}
1-\text{Var Stats (one-variable statistics) 200, 377}
2-\text{PropZInt (two-proportion \pm confidence interval) 232, 369}
2-\text{PropZTest (two-proportion \pm test) 228, 369}
2\text{-SampFTest (two-sample F-Test) 235, 372}
2\text{-SampTInt (two-sample t confidence interval) 231, 372}
2\text{-SampTTest (two-sample t test) 226, 373}
2\text{-SampZInt (two-sample \pm test) 230, 372}
2\text{-SampZTest (two-sample \pm test) 225, 372}
2\text{-Var Stats (two-variable statistics) 200, 377}

A

\text{a+bi (rectangular complex mode) 17, 50, 355}
\text{about 326}
\text{above graph style 71}
\text{abs((absolute value) 46, 55, 152, 354}
\text{accuracy information}
\text{computational and graphing 398}
\text{function limits and results 399}
\text{graphing 78}
\text{addition (+) 36, 381}
\text{alpha cursor 8}
\text{alpha-lock 14}
\text{alternative hypothesis 219}
\text{amortization}
\text{Int((sum of interest) 363}
\text{Prn((sum of principal) 368}
\text{bal((amortization balance) 258, 355}
\text{calculating schedules 258}
\text{formula 389}
\text{and (Boolean operator) 63, 354}
\text{ANGLE menu 59}
\text{angle modes 16}
\text{angle(55, 354}
\text{animate graph style 71}
\text{ANOVA((one-way variance analysis) 238, 354, 385}
\text{Ans (last answer) 24, 329, 354}
\text{APD (Automatic Power Down) 3}
\text{applications See examples, applications 36}
\text{Apps 20, 328}
\text{AppVars 20, 328}
\text{arccosine (cos^(-1)() 36}
\text{Archive 21, 330, 354}
\text{archive full error 343, 394}
\text{garbage collection 340}
\text{memory error 340}
\text{archived variables 383}
\text{arc sine (sin^(-1)() 36}
\text{arctangent (tan^(-1)() 36}
\text{Asm(294, 354}
\text{AsmComp(294, 354}
\text{asmPrgm(294, 354}
\text{assembly language programs 294}
\text{augment(157, 173, 354}
\text{Automatic Power Down (APD) 3
automatic regression equation 196
automatic residual list (RESID) 195
axes format, sequence graphing 107
axes, displaying (AxesOn, AxesOff) 75, 355
AxesOff 75, 355
AxesOn 75, 355

B
backing up calculator memory 348, 351
ball (amortization balance) 258, 355
batteries 4, 400
below graph style 71
binomcdf(247, 355
binompdf(246, 355
block 340
Boolean logic 63
box pixel mark (●) 132, 210
Boxplot plot type (c) 209
busy indicator 8

C
C/Y (compounding-periods-per-year variable) 253, 263
χ²cdf((chi-square cdf) 355
χ²pdf((chi-square pdf) 355
χ²-Test (chi-square test) 355
CALCULATE menu 87
Calculate output option 218, 220
cash flow
calculating 257
formula 389
irr((internal rate of return) 258, 363
npv((net present value) 258, 367
CATALOG 266
CBL 2™ 293, 346, 361
CBR™ 293, 346, 361
check memory 326
checkTimer (check timer) 355
Chi 234
chi-square cdf (χ²cdf() 245, 355
chi-square goodness of fit test 234
chi-square pdf (χ²pdf() 244, 355
chi-square test (χ²-Test) 233, 234, 355
Circle((draw circle) 128, 355
Clear Entries 326, 356
clearing
t all lists (ClrAllLists) 326, 356
drawing (ClrDraw) 123, 356
ten entries (Clear Entries) 326, 356
home screen (ClrHome) 292, 356
list (ClrList) 194, 356
table (ClrTable) 292, 356
Clock 9
Clock Off 11
Clock On 10
ClockOff, turn clock off 356
ClockOn, turn clock on 356
ClrAllLists (clear all lists) 326, 356
ClrDraw (clear drawing) 123, 356
ClrHome (clear home screen) 292, 356
ClrList (clear list) 194, 356
ClrTable (clear table) 292, 356
coefficients of determination (r², R²) 196
colon separator (:) 278
combinations (nCr) 57, 366
compiling an assembly program 294, 354
complex
t modes (a+bi, re^θi) 17, 50, 355, 370	numbers 17, 50, 370
compounding-periods-per-year variable (C/Y) 253, 263
contentanation (+) 270, 381
conefidence intervals 36, 220
cog((conjugate) 54, 356
Connected (plotting mode) 17, 356
connecting two calculators 346, 349
cntast (display) 4
convergence, sequence graphing 110
conversions
>Dec (to decimal) 39, 357
>DMS (to degrees/minutes/ seconds) 61, 358
>Eff (to effective interest rate) 261
4F3 4D 50
>Frac (to fraction conversion) 39, 360
4n/d3 4Un/d 49
>Nom (to nominal interest rate conversion) 261, 366
>Polar (to polar conversion) 56, 368
>Rect (to rectangular conversion) 56, 371
Equation((equation-to-string conversion) 270, 359
ListMatr((list-to-matrix conversion) 158, 173, 364
MatrList((matrix-to-list conversion) 157, 174, 365
PhR(, PhY((polar-to-rectangular conversion) 61, 369
RPr(, RPh((rectangular-to-polar conversion) 372
RPr(, RPh((rectangular-to-polar conversion) 61
StringEquat((string-to-equation conversion) 271, 375
convert time, timeCnv() 376
CoordOff 75, 356
CoordOn 75, 356
correlation coefficient (r) 196
cos((cosine) 36, 356
cos⁻¹((arccosine) 36, 356
cosh((hyperbolic cosine) 273, 356
cosh⁻¹((hyperbolic arccosine) 273, 356
cosine (cos() 36
cosine (cos() 356
cross pixel mark (+) 132, 210
cube (³) 39, 380
cube root (⁴√) 39
cube root (⁴√) 380
cubic regression (CubicReg) 201, 356
CubicReg (cubic regression) 201, 356
CumSum((cumulative sum) 158, 170, 357
cumulative sum (cumSum() 158, 170
cumulative sum (cumSum() 357
cursors 8, 14

405
Data input option 218, 219
dayOfWk((day of week) 357
days between dates (dbd() 261
days between dates (dbd() 357, 390
dbd((days between dates) 261, 357, 390
decimal mode (float or fixed) 16
decrement and skip (DS<) 286
decrement and skip (DS<) 358
definite integral 40, 89, 96
defragmenting 340
Degree angle mode 16, 60, 357
degrees notation (°) 60, 379
delete variable contents (DelVar) 287, 357
deleting items from memory 329
DependAsk 116, 118, 357
DependAuto 116, 118, 357
derivative See numerical derivative 36
det((determinant) 155, 357
determinant (det() 155
determinant (det() 357
DiagnosticOff 196, 357
DiagnosticOn 196, 357
diagnostics display mode(r, r2, R2) 196
differentiation 42, 89, 96, 101
dim((dimension) 155, 169, 357
dimensioning a list or matrix 155, 169, 357
Disp (display) 290, 358
DispGraph (display graph) 291, 358
display contrast 4
display cursors 8
Displaying the Clock Settings 9
DispTable (display table) 291, 358
DISTR (distributions menu) 241
DISTR DRAW (distributions drawing menu) 248
distribution functions
binomcdf(247, 355
binompdf(246, 355
\chi^2cdf(355
\chi^2pdf(355
Fcdf(244, 375
Fpdf(243, 376
gaussiancdf(248, 361
gaussianpdf(248, 361
invNorm(243, 363
normalcdf(242, 366
normalpdf(242, 366
poissoncdf(247, 368
poissonpdf(247, 368
distribution shading instructions
Shade_ t(249, 374
Shade_ \chi^2(250, 374
ShadeF(250, 374
ShadeNorm(249, 374
division (/) 36, 381
\Delta list(171, 364
DMS (degrees/minutes/seconds entry notation) 60, 382
Dot (plotting mode) 17, 358
dot graph style 71
dot pixel mark (.) 132, 210
dr/dt operation on a graph 101
DRAW menu 122
Draw output option 218, 220
DRAW POINTS menu 131
DRAW STO (draw store menu) 134
DrawF (draw a function) 127, 358
drawing on a graph
circles (Circle() 128
functions and inverses (DrawF, DrawInv) 127
line segments (Line() 124
lines (Horizontal, Line(, Vertical) 125
points (Pt-Change, Pt-Off, Pt-On) 131
tangents (Tangent) 126
text (Text) 129
using Pen 130
DrawInv (draw inverse) 127, 358
DS< (decrement and skip) 286, 358
DuplicateName menu 350
dx/dt operation on a graph 89, 96
dy/dx operation on a graph 89, 96, 101

E
\epsilon (exponent) 12, 15, 358
e^x (exponential) 37, 358
edit keys table 13
Else 282
End 283, 359
Eng (engineering notation mode) 15, 359
ENTRY (last entry key) 22
entry cursor 8
EOS (Equation Operating System) 29
eqn (equation variable) 42
EqString((equation-to-string conversion) 270, 359
equal-to relational test (=) 62, 380
Equation Operating System (EOS) 29
Equation Solver 42
equations with multiple roots 44
ersors
 diagnosing and correcting 33
messages 394
examples—applications
area between curves 316
areas of regular n-sided polygons 321
box plots 306
box with lid 299
 defining a 299
 defining a table of values 300
 setting the viewing window 302
 tracing the graph 303
 zooming in on the graph 304
 zooming in on the table 301
cobweb attractors 312
fundamental theorem of calculus 319
guess the coefficients 313
inequalities 309
mortgage payments 323
parametric equations, ferris wheel problem 317
piecewise functions 308
quadratic formula 406
converting to a fraction 297
displaying complex results 298
entering a calculation 297
Sierpinski triangle 311
solving a system of nonlinear equations 310
unit circle and trig curves 315
examples—Getting Started
coin flip 35
compound interest 253
drawing a tangent line 121
financing a car 252
forest and trees 102
generating a sequence 161
mean height of a population 215
path of a ball 91
pendulum lengths and periods 178
polar rose 97
roots of a function 115
sending variables 344
solving a system of linear equations 144
unit circle 137
volume of a cylinder 275
examples—miscellaneous
calculating outstanding loan balances 259
convergence 110
daylight hours in Alaska 204
predator-prey model 111
examples—Getting Started
graphing a circle 65
exponential regression (ExpReg) 202, 359
expr((string-to-expression conversion) 270, 359
ExpReg (exponential regression) 202, 359
expression 11
converting from string (expr() 270
converting from string (expr() 359
turning on and off (ExprOn 76, 359
ExprOff (expression off) 70, 360
ExprOn (expression on) 70, 360
F
Faceplates 8
factorial (!) 379
family of curves 77
Fill(156, 359
FINANCE CALC menu 254
FINANCE VARS menu 262
financial functions
 amortization schedules 258
 cash flows 257
 days between dates 261
 interest rate conversions 260
 payment method 262
 time value of money (TVM) 255
 Fix (fixed-decimal mode) 16, 359
 fixed-decimal mode (fix) 16, 359
 Float (floating-decimal mode) 16, 359
 floating-decimal mode (Float) 16, 359
 fMax((function maximum) 360
 fMin((function minimum) 40, 360
 fnInt((function integral) 41, 360
 FnOff (function off) 70, 360
 FnOn (function on) 70, 360
 For(283, 360
 format settings 74, 107
 formulas
 amortization 389
 ANOVA 385
 cash flow 389
 days between dates 390
 interest rate conversions 390
 logistic regression 384
 sine regression 384
 time value of money 387
 two-sample F-Test 385
 two-sample t test 386
 fPart((fractional part) 47, 154, 360
 fractions
 n/d 18, 50
 Un/d 18, 50
 free-moving cursor 78
 frequency 199
 Full (full-screen mode) 17, 360
 full-screen mode (Full) 17, 360
 Func (function graphing mode) 16, 360
 function graphing
 accuracy 78
 CALC (calculate menu) 87
 defining and displaying 66
 defining in the Y= editor 68
 defining on the home screen, in a program 68
deselecting 69
 displaying 66, 73, 76
 ΔX and ΔY window variables 74
evaluating 69
 family of curves 77
 format settings 74
 free-moving cursor 78
 graph styles 71
 maximum of (fMax() 40
 maximum of (fMax() 360
 minimum of (fMin() 360
 modes 16, 67, 360
 moving the cursor to a value 79
 overlaying functions on a graph 77
 panning 80
 pausing or stopping a graph 76
 Quick Zoom 80
 selecting 69, 70, 360
 shading 72
 Smart Graph 76
 tracing 78
 viewing window 73
 window variables 73
 Y= editor 68
 ZOOM MEMORY menu 85
 ZOOM menu 80
 function integral (fnInt() 41
 function integral (fnInt() 360
 function, definition of 12
 functions and instructions table 354
 future value 253, 257

407
FV (future-value variable) 253, 263

G

garbage collecting 339
GarbageCollect 341, 360
gcd((greatest common divisor) 48, 360
GDB (graph database) 135
gemometricf (248, 361
gemometpdf (248, 361
Get((get data from CBL 2™ or CBR™) 293, 361
GetCalc((get data from TI-84 Plus) 292, 361
getDate, get current date 361
getDfnt, get date format 361
getDfStr((get date string) 361
getKey 292, 361
getime, get current time 361
Getting Started See examples, Getting Started 36
getTmFmt, get time format 361
gemetStr((get time string) 361
Goto 285, 361

graph database (GDB) 135

graph style
above 71
animate 71
below 71
dot 71
line 71
path 71
shade above 71
shade below 71
thick 71

graph styles 71
graphing modes 16
graphing-order modes 17
GraphStyle (288, 362
graph-table split-screen mode (G-T) 17, 140, 362
greater than (>) 62, 380
greater than or equal to (≥) 62, 380
greatest common divisor (gcd() 48
greatest common divisor (gcd() 360
greatest integer (int() 47, 154
greatest integer (int() 363
GridOff 75, 362
GridOn 75, 362

grouping 336
G-T (graph-table split-screen mode) 17, 140, 362

H

Histogram plot type (H) 209
home screen 5
scrolling 5, 22
Horiz (horizontal split-screen mode) 17, 139, 362
Horizontal (draw line) 125, 362
hyperbolic functions 273
hypothesis tests 223

I

i (complex number constant) 52
1% (annual interest rate variable) 253, 263

identity(156, 362
If instructions
if 282, 362
If-Then 282, 362
If-Then-Else 282, 362
imag((imaginary part) 55, 362
imaginary part (imag() 55
imaginary part (imag() 362
implied multiplication 29
increment and skip (IS>() 286
increment and skip (IS>() 363
independent variable 116, 118, 362
IndpntAsk 116, 118, 362
IndpntAuto 116, 118, 362

inference stat editors 218
inferences statistics See stat tests 36
Input 289, 362
insert cursor 8
Installing New Faceplates 9
Installing New faceplates 9
inString((in string) 271, 363
instruction, definition of 13
int((greatest integer) 47, 154, 363
integer part (iPart() 47, 154
integer part (iPart() 363
integral See numerical integral 36
interest rate conversions
Eff((compute effective interest rate) 261
Nom((compute nominal interest rate) 261
calculating 261
formula 390
internal rate of return (irr() 258
internal rate of return (irr() 363
intersect operation on a graph 89
inverse (−) 37, 380
inverse cumulative normal distribution (invNorm() 243
inverse cumulative normal distribution (invNorm() 363
inverse trig functions 36
invNorm((inverse cumulative normal distribution) 243, 363
invT (inverse Student T distribution) 243
iPart((integer part) 47, 154, 363
irr((internal rate of return) 258, 363
IS>((increment and skip) 286, 363
isClockOn, is on clock 363

408
K
keyboard
layout 1
math operations 36
key-code diagram 292

L
L (user-created list name symbol) 174
LabelOff 76, 363
LabelOn 76, 363
labels
 graph 76, 363
 program 285, 363
Last Entry 22
Lbl (label) 285, 363
LabelOff 76, 363,
LabelOn 76, 363
labels
graph 76, 363
program 285, 363
Last Entry 22
Lbl (label) 285, 363
LabelOff 76, 363,
LabelOn 76, 363
labels
graph 76, 363
program 285, 363
Last Entry 22
Lbl (label) 285, 363
Lcm (least common multiple) 48, 364
least common multiple (lcm() 48
least common multiple (lcm() 364
length(of string 271, 364
less than () 62, 380
less than or equal to () 62, 380
line graph style 71
line segments, drawing 124
Line((draw line) 125, 364
lines, drawing 125
LINK RECEIVE menu 350
LINK SEND menu 347
linking
 receiving items 350
 to a CBL Z™ or CBR™ 346
 to a PC or Macintosh 346
 to a TI-84 Plus Silver Edition or TI-84 Plus 351
transmitting items 344
two TI-84 Plus units 348
Link-Receive L1 (or any file) to Restore message 392
LinReg(ax+bx) (linear regression) 202, 364
LinReg(ax+b) (linear regression) 201, 364
LinRegTTest (linear regression t test) 236, 364
LinRegTInt (confidence interval for slope) 237
LIST MATH menu 175
LIST NAMES menu 164
LIST OPS menu 168
ListMatr((lists-to-matrix conversion) 158, 173, 364
lists
 accessing an element 164
 attaching formulas 165, 166, 188
 clearing all elements 187
 copying 163
 creating 162, 186
 deleting from memory 164, 329
detaching formulas 166, 190
dimension 163
entering list names 165, 185
indicator () 163
naming lists 162
storing and displaying 163
using to graph a family of curves 77, 164
using with math operations 36, 167
ln(37, 364
LnReg (logarithmic regression) 202, 364
log(37, 364
Logistic (regression) 203, 364
logistic regression formula 384

M
Manual Linear Fit 198, 205
marked for deletion 340
MATH CPX (complex menu) 54
MATH menu 38
MATH NUM (number menu) 45
math operations 36
MATH PRB (probability menu) 56
MatrList((matrix-to-list conversion) 157, 174, 365
matrices
 accessing elements 150
 copying 150
 defined 145
deleting from memory 146
dimensions 146, 155, 156
displaying a matrix 149
displaying matrix elements 146
editing matrix elements 147
indicator () 148
math functions 151
matrix math functions (det(, T, dim(, Fill(, identity(, randM(, augment(, MatrList(, ListMatr(, cumSum() 154
quick matrix 143
relational operations 153
row operations (ref(, rref(, rowSwap(, row+(, *row(, *row+() 158
selecting 145
viewing 146
MATRIX EDIT menu 145
MATRIX MATH menu 154
max((maximum) 48, 175, 365
maximum of a function (fMax() 40
maximum of a function (fMax() 360
maximum operation on a graph 88
mean(175, 365
Med(Med (median-median) 200
median(175, 365
Med-Med (median-median) 365
Mem Mgmt/Del menu 327
memory
 backing up 351
 checking available 326
clearing all list elements from 330
clearing entries from 329
deleting items from 329
derror 341
insufficient during transmission 353
resetting defaults 334
resetting memory 334
MEMORY menu 326
Menu((define menu) 286, 365
menus 25, 26
defining (Menu() 286
defining (Menu() 365
scrolling 26
shortcut 1, 6
min((minimum) 48, 175, 365
minimum of a function (fMin() 40
minimum of a function (fMin() 360
minimum operation on a graph 88
minutes notation (‘) 60, 382
ModBoxplot plot type () 209
mode
Answers 18
Classic 5, 18
MathPrint 5, 18
mode settings 14
a+bi (complex rectangular) 17, 50, 355
Connected (plotting) 17, 356
Degree (angle) 16, 61, 357
Dot (plotting) 17, 358
Eng (notation) 15, 359
Fix (decimal) 16, 359
Float (decimal) 16, 359
Full (screen) 17, 360
Func (graphing) 16, 360
G-T (screen) 17, 362
Horiz (screen) 17, 362
Normal (notation) 15, 366
Par/Param (graphing) 16, 367
Pol/Polar (graphing) 16, 368
Radian (angle) 16, 61, 370
re^0i (complex polar) 370
re^0i (complex polar) 17, 50
Real 17, 370
Sci (notation) 15, 373
Seq (graphing) 16, 373
Sequential (graphing order) 17, 373
Simul (graphing order) 17, 374
modified box plot type () 209
multiple entries on a line 12
multiplication (*) 36, 381
multiplicative inverse 37
N
N (number of payment periods variable) 253, 263
n/d 18, 50
nCr (number of combinations) 57, 366
nDeriv (numerical derivative) 40, 366
negation (-) 30, 37, 381
nonrecursive sequences 105
normal distribution probability (normalcdf() 242, 366
Normal notation mode 15, 366
normal probability plot type () 210
normalcdf (normal distribution probability) 242
normalpdf (probability density function) 242, 366
NormProbPlot plot type () 210
not equal to ($) 62, 380
not((Boolean operator) 63, 367
nP (permutations) 57, 367
npv (net present value) 258, 367
numerical derivative 40, 89, 96, 101
numerical integral 40, 90
O
Omit 338, 351
one-proportion z confidence interval (1-PropZInt) 232, 369
one-proportion z test (1-PropZTest) 227, 369
one-sample z confidence interval (1-Interval) 229, 376
one-variable statistics (1-Var Stats) 200, 377
or (Boolean) operator 63, 367
order of evaluating equations 29
Output(142, 291, 367
Overwrite 338, 350
Overwrite All 338
P
P/Y (number-of-payment-periods-per-year variable) 253, 263
PrRx(, PrRy((polar-to-rectangular conversions) 61, 369
panning 80
Par/Param (parametric graphing mode) 16, 367
parametric equations 94
parametric graphing
CALC (calculate operations on a graph) 96
defining and editing 94
free-moving cursor 95
graph format 94
graph styles 93
moving the cursor to a value 96
selecting and deselecting 94
setting parametric mode 93
tracing 96
window variables 94
Y= editor 93
zoom operations 96
parentheses 29
path graph style 71
Pause 284, 367
pausing a graph 76
Pen 130
permutations (nP) 57, 367
phase plots 111
Pic (pictures) 134
pictures (Pic) 134
pixels in HorizG-T modes 133, 141
Plot1(210, 367
Plot2(210, 367
Plot3(210, 367
PlotsOff 212, 368
PlotsOn 212, 368
plotting modes 17
plotting stat data 208
PMT (payment amount variable) 253, 263
Pmt_Bgn (payment beginning variable) 262, 368
Pmt_End (payment end variable) 262, 368
poissoncdf(247, 368
poissonpdf(247, 368
Pol/Polar (polar graphing mode) 16, 98, 368
polar equations 98
polar form, complex numbers 52
polar graphing
CALC (calculate operations on a graph) 101
defining and displaying 98
equations 98
free-moving cursor 100
graph format 99
graph styles 98
mode (Pol/Polar) 16, 98, 368
moving the cursor to a value 100
selecting and deselecting 98
tracing 100
window variables 99
Y= editor 98
ZOOM operations 101
PolarGC (polar graphing coordinates) 75, 368
pooled option 218, 220
power (\(^\)) 36, 380, 381
power of ten (10\(^\)) 37
power of ten (10\(^\)) 381
present value 253, 256
previous entry (Last Entry) 22
prgm (program name) 287, 368
PRGM CTL (program control menu) 281
PRGM EDIT menu 280
PRGM EXEC menu 280
PRGM NEW menu 277
probability 56
probability density function (normalpdf() 242
probability density function (normalpdf() 366
prod((product) 176, 368
programming
 copying and renaming 280
 creating new 277
 defined 276
 deleting 277
 deleting command lines 280
 editing 279
 entering command lines 278
 executing 279
 inserting command lines 280
 instructions 281
 name (prgm) 287, 368
 renaming 280
 running assembly language program 294
 stopping 279
 subroutines 293
Prompt 290, 369
Pt-Change(132, 369
Pt-Off(132, 369
Pt-On(131, 369
PV (present value variable) 253, 263
p-value 240
PwrReg (power regression) 203, 369
Pxl-Change(133, 369
Pxl-Off(133, 369
Pxl-On(133, 369
pxl-Test(133, 369
Quick Zoom 80
Quit 338, 351
R
r (correlation coefficient) 196
\(\tau \) (radian notation) 61, 379
r2, R2 (coefficients of determination) 196
\(\text{R\text{Pr}}, \text{R\text{Pol}} \) (rectangular-to-polar conversions) 372
\(\text{R\text{Pr}}, \text{R\text{Pol}} \) (rectangular-to-polar conversions) 61
Radian angle mode 16, 61, 370
radian notation (\(\tau \)) 61, 379
RAM ARCHIVE ALL menu 333
rand (random number) 57, 370
randBin((random binomial) 59, 370
randInt((random integer) 58, 370
randIntNoRep(59
randM((random matrix) 157, 370
randNorm((random Normal) 58, 370
random seed 57
RCL (recall) 21
re^\(\text{i} \) (polar complex mode) 370
re^\(\text{i} \) (polar complex mode) 17, 50
Real mode 17, 370
reall (real part) 54, 370
RecallGDB 136, 370
RecallPic 135, 370
rectangular form, complex numbers 52
RectGC (rectangular graphing coordinates) 75, 371
recursive sequences 105
re-enabling a disabled calculator 392
reff (row-echelon form) 159, 371
RegEQ (regression equation variable) 196, 329
regression model
 automatic regression equation 196
 automatic residual list feature 195
diagnostics display mode 196
 models 200
relational operations 62, 153
remainder(49
Removing a Faceplate 9
Repeat 284, 371
RESET MEMORY menu 336
resetting
 all memory 336
 archive memory 335
defaults 334
memory 334
RAM memory 334
residual list (RESID) 195
Return 287, 371
root (\(^\sqrt{\}) 40, 379
root of a function 88
round(47, 152, 371
row+(371
rowSwap(159, 371
reff((reduced-row-echelon form) 159, 372
S
Sci (scientific notation mode) 15, 373
scientific notation 12

411
sine (sin() 374
sinh (hyperbolic sine) 273, 374
sinh⁻¹ (hyperbolic arcsine) 273, 374
SinReg (sinusoidal regression) 203, 374
Smart Graph 76
solve(44, 374
Solver 42
solving for variables in the equation solver 43
SortA((sort ascending) 168, 194, 374
SortD((sort descending) 168, 194, 374
split-screen modes
G-T (graph-table) mode 140
Horiz (horizontal) mode 139
setting 138, 142
split-screen values 130, 133, 141
square () 36, 380
square root () 36
square root () 36
startTmr, start timer 374
STAT CALC
Stat Wizards 198
STAT CALC menu 198
STAT EDIT menu 193
stat list editor
attaching formulas to list names 188
clearing elements from lists 187
creating list names 186
detaching formulas from list names 190
displaying 184
edit-elements context 192
ingiding elements of formula-generated lists 190
editing list elements 187
entering list names 185
enter-names context 193
formula-generated list names 189
removing lists 186
restoring list names L1–L6 186
switching contexts 190
view-elements context 192
view-names context 193
STAT PLOTS menu 210
stat tests and confidence intervals
1-PropZInt (one-proportion z confidence interval) 232
1-PropZTest (one-proportion z test) 227
2-PropZInt (two-proportion z confidence interval) 232
2-PropZTest (two-proportion z test) 228
2-SampFTest (two-sample F-Test) 235
2-SampTInt (two-sample t confidence interval) 231
2-SampTTest (two-sample t test) 226
2-SampZInt (two-sample z confidence interval) 230
2-SampZTest (two-sample z test) 225
ANOVA (one-way analysis of variance) 236
χ²-Test (chi-square test) 233, 234
χ²-Test (chi-square test) 233, 234
LinRegTTest (linear regression r test) 236
Tinterval (one-sample r confidence interval) 229
T-Test (one-sample r test) 224
ZInterval (one-sample \(z \) confidence interval) 229
Z-Test (one-sample \(z \) test) 223
STAT TESTS menu 221
STAT WIZARDS 1, 198, 199
statistical distribution functions See distribution functions 36
statistical plotting 208
Boxplot (regular box plot) 209
defining 210
from a program 212
Histogram 209
ModBoxplot (modified box plot) 209
NormProbPlot (normal probability plot) 210
tracing 212
turning on/off stat plots 70, 212
viewing window 212
xyLine 208
statistical variables table 206
Stats input option 218, 219
stdDev (standard deviation) 176, 375
Stop 287, 375
Store (\(\rightarrow \)) 20, 375
StoreGDB 135, 375
StorePic 134, 375
storing
graph databases (GDBs) 135
graph pictures 134
variable values 20
String\text{\texttt{\textasciitilde}}Equ (string-to-equation conversions) 271, 375
strings
concatenation (+) 270, 381
converting 270
defined 267
displaying contents 269
entering 267
functions in CATALOG 269
indicator (\(\texttt{\textasciitilde} \)) 267
length (\text{\texttt{\textasciitilde}}length()) 271
length (\text{\texttt{\textasciitilde}}length()) 364
storing 268
variables 268
student-\(r \) distribution
probability (tcdf() 244
probability (tcdf() 375
student-\(r \) distribution
probability density function (tpdf() 243
probability density function (tpdf() 376
sub(substring) 272, 375
subroutines 287
subtraction (\(-\)) 36, 381
sum(summation) 176, 375
system variables 383

T
T (transpose matrix) 155, 379
TABLE SETUP screen 116
tables
description 118
variables 116, 117
tan((tangent) 36, 375
tan-1 (arctangent) 36, 375
tangent (\texttt{\textasciitilde}tan() 36
tangent (\texttt{\textasciitilde}tan() 375
tangent lines, drawing 126
Tangent((draw line) 126, 375
tanh (hyperbolic tangent) 273, 375
tanh-1 (hyperbolic arctangent) 273, 375
TblStart (table start variable) 287, 375
tcdf (student-\(r \) distribution probability) 244, 375
TEST (relational menu) 62
TEST LOGIC (Boolean menu) 63
Text(
instruction 129, 142, 376
placing on a graph 129, 142
Then 282, 362
thick graph style 71
TI ConnectTM 346
TI-84 Plus
key code diagram 292
keyboard 1
Time axes format 107, 376
time value of money (TVM)
\(C/Y \) variable (number of compounding periods per year) 263
calculating 255
formulas 387
FV variable (future value) 263
\% variable (annual interest rate) 263
\(N \) variable (number of payment periods) 263
\(P/Y \) variable (number of payment periods per year) 263
PMT variable (payment amount) 263
PV variable (present value) 263
TVM Solver 253
tvm_FV (future value) 257, 376
tvm_I\% (interest rate) 376
tvm_I\% (interest rate) 256
tvm_N (\# payment periods) 256, 376
tvm_Pmt (payment amount) 256, 376
tvm_PV (present value) 256, 376
variables 262
timeCnv(), convert time 376
TInterval (one-sample \(t \) confidence interval) 376
TInterval (one-sample \(t \) confidence interval) 229
tcdf (student-\(r \) distribution probability density function) 243, 376
TRACE
cursor 79
entering numbers during 79, 96, 100, 108
expression display 76, 79
Trace instruction in a program 80, 376
transmitting
error conditions 352
from a TI-83 351
from a TI-83 Plus Silver Edition or TI-84 Plus 351
from a TI-84 Plus Silver Edition or TI-84 Plus 351
stopping 348
to a TI-84 Plus Silver Edition or TI-84 Plus 348
transpose matrix (\(T \)) 155, 379
trigonometric functions 36
T-Test (one-sample \(t \) test) 224, 376
turn clock off, ClockOff 356
turn clock on, ClockOn 356
turning on and off
axes 75
calculator 3
coordinates 75
expressions 76
functions 70
grid 75
labels 76
points 131
stat plots 70, 212
tvm_FV (future value) 257, 376
tvm_I% (interest rate) 376
tvm_I% (interest rate) 256
tvm_N (# payment periods) 256, 376
tvm_Pmt (payment amount) 256, 376
tvm_PV (present value) 256, 376
two-proportion \(\pm \) confidence interval (2-PropZInt) 232, 369
two-proportion \(\pm \) test (2-PropZTest) 228, 369
two-sample F-Test formula 385
two-sample \(\pm \) test formula 386
two-variable statistics (2-Var Stats) 200, 377
U
u sequence function 103
Un/d 18, 50
UnArchive 21, 330, 377
ungrouping 336
user variables 383
uv/uvAxes (axes format) 107, 377
uw/uwAxes (axes format) 107, 377
V
v sequence function 103
value operation on a graph 87
variables
complex 19
displaying and storing values 21
equation solver 43
graph databases 19
graph pictures 19
independent/independent 118
list 19, 162
matrix 19, 145
real 19
recalling values 21
solver editor 43
statistical 206
string 268
test and interval output 240
types 19
user and system 20, 383
VARS and Y-VARS menus 27
variance of a list (\texttt{variance()}) 176
variance of a list (\texttt{variance(\)}) 377
\texttt{variance(\ variance of a list\)} 176, 377
VARS menu
GDB 27
Picture 27
Statistics 27
String 27
Table 27
Window 27
Zoom 27
Vertical (draw line) 125, 377
viewing window 73
vw/uvAxes (axes format) 107, 377
W
w sequence function 103
Web (axes format) 107, 377
web plots 109
While 283, 377
window variables
function graphing 73
parametric graphing 95
polar graphing 99
X
\(\sqrt{x}\) (root) 379
XFact zoom factor 86
x-intercept of a root 88
xor (Boolean) exclusive or operator 63, 377
xth root (\(\sqrt[x]{\ }\)) 40
xyLine (\(\triangle\square\)) plot type 208
Y
Y= editor
function graphing 68
parametric graphing 93
polar graphing 98
sequence graphing 103
YFact zoom factor 86
Y-VARS menu
Function 28
On/Off 28
Parametric 28
Polar 28
Z
ZBox 81, 377
ZDecimal 82, 377
zero operation on a graph 88
ZInteger 83, 378
ZInterval (one-sample \(\pm\) confidence interval) 229, 378
zoom 80, 81, 82, 83, 85, 86
cursor 81
factors 86
function graphing 80
parametric graphing 96
polar graphing 101
sequence graphing 108
Zoom In (zoom in) 82, 378
ZOOM MEMORY menu 85
ZOOM menu 80
Zoom Out (zoom out) 82, 378
ZoomFit (zoom to fit function) 83, 378
ZoomRcl (recall stored window) 86, 378
ZoomStat (statistics zoom) 83, 378
ZoomSto (store zoom window) 85, 378
ZPrevious (use previous window) 379

ZSquare (set square pixels) 82, 379
ZStandard (use standard window) 83, 379
Z-Test (one-sample z test) 223, 379
ZTrig (trigonometric window) 83, 379