

Objectives

- To investigate the special properties of an altitude, a median, and an angle bisector
- To reinforce the differences between an altitude, a median, and an angle bisector

Cabri[®] Jr. Tools

Altitude, Median, and Angle Bisector of a Triangle

Introduction

Altitudes, medians, and angle bisectors are common structures used to study triangles in geometry. In this activity, you will construct these special segments (lines) of a triangle using their definitions. You will look at how an altitude, a median, and an angle bisector divide the area of a triangle.

This activity makes use of the following definitions:

Altitude of a triangle — a segment or line drawn from a vertex perpendicular to the opposite side (or an extension of that side) of the triangle. A triangle has three altitudes.

Median of a triangle — a segment drawn from a vertex to the midpoint of the opposite side of the triangle. A triangle has three medians.

Angle bisector — a line (or ray) that passes through the vertex of an angle to form two congruent angles.

Construction

Construct an altitude, a median, and an angle bisector of a triangle.

- \square Draw an acute triangle, $\triangle ABC$, in the center of the screen.
- 4-
- Construct the altitude \overline{AD} by constructing a line perpendicular to side \overline{BC} that passes through and is defined by point A.

[A] Construct and label point D_i the intersection of the altitude with side \overline{BC} .

 \blacksquare Construct and label the midpoint (point *E*) of side \overline{BC} .

_	<u> </u>
	lo J

nstruct the median \overrightarrow{AF} .

Construct the angle bisector of $\angle BAC$.

 \overrightarrow{P} A Construct and label the intersection of the angle bisector with side \overrightarrow{BC} point *F*.

Exploration

- Show \overrightarrow{AD} and hide \overrightarrow{AE} and \overrightarrow{AF} . Explore the altitude \overrightarrow{AD} by dragging the sides and vertices of $\triangle ABC$. Use various measurement tools (**Distance and Length**, **Angle**, **Area**) and observe any relationships that exist between $\triangle ABC$, $\triangle ADB$, $\triangle ADC$ and their parts. Be sure to investigate these relationships when $\triangle ABC$ is a special triangle (acute, right, obtuse, scalene, isosceles, and equilateral).
- Show \overrightarrow{AE} and hide \overrightarrow{AD} and \overrightarrow{AF} . Explore the median \overrightarrow{AE} by dragging the sides and vertices of $\triangle ABC$. Use various measurement tools and observe any relationships that exist between $\triangle ABC$, $\triangle AEB$, $\triangle AEC$ and their parts. Be sure to investigate these relationships when $\triangle ABC$ is a special triangle.
- Show \overrightarrow{AF} and hide \overrightarrow{AD} and \overleftarrow{AE} . Explore the angle bisector \overrightarrow{AF} by dragging the sides and vertices of $\triangle ABC$. Use various measurement tools and observe any relationships that exist between $\triangle ABC$, $\triangle AFB$, $\triangle AFC$ and their parts. Be sure to investigate these relationships when $\triangle ABC$ is a special triangle.
- Show \overrightarrow{AD} , \overrightarrow{AE} and \overrightarrow{AF} and explore the relationship among the altitude, median, and angle bisector constructed from the same vertex. Use various measurement tools and observe any relationships that exist among these lines, $\triangle ABC$, and the triangles formed by these lines and the side \overline{BC} (for example $\triangle ADE$).

Questions and Conjectures

- 1. Make a conjecture about any special relationships that exist between a triangle and an **altitude** of the triangle. Be sure to identify any relationships that exist when $\triangle ABC$ has specific properties. Explain your answers and be prepared to demonstrate.
- 2. During the exploration of the altitude \overrightarrow{AD} , you should have seen that point *D* did not always exist. Explain why this happened. How could you have done this construction differently to ensure that point *D* was displayed for any $\triangle ABC$?
- 3. Make a conjecture about any special relationships that exist between a triangle and a **median** of the triangle. Be sure to identify any relationships that exist when $\triangle ABC$ has specific properties. Explain your answers and be prepared to demonstrate.
- 4. Make a conjecture about any special relationships that exist between a triangle and an **angle bisector** of the triangle. Be sure to identify any relationships that exist when $\triangle ABC$ has specific properties. Explain your answers and be prepared to demonstrate.
- 5. Make a conjecture about the relationship between an altitude, median, and angle bisector constructed from the same vertex of a triangle. Be sure to identify any relationships that exist when $\triangle ABC$ has specific properties. Explain your answers and be prepared to demonstrate.

Teacher Notes

Activity 18

Altitude, Median, and Angle Bisector of a Triangle

Objectives

- To investigate the special properties of an altitude, a median, and an angle bisector
- To reinforce the differences between an altitude, a median, and an angle bisector

Cabri[®] Jr. Tools

Additional Information

You may want to break your class into small groups and assign each group a different exploration. Each group can report its findings back to the class.

Answers to Questions and Conjectures

1. Make a conjecture about any special relationships that exist between a triangle and an **altitude** of the triangle. Be sure to identify any relationships that exist when $\triangle ABC$ has specific properties. Explain your answers and be prepared to demonstrate.

Conjectures that the students might develop include, but are not limited to, the following:

- When vertex A moves along a path parallel to side \overline{BC} , the distance AD remains constant.
- An altitude falls outside the triangle when either $\angle ABC$ or $\angle ACB$ are obtuse.
- The altitude of a triangle is one of its sides when either ∠ABC or ∠ACB are right angles.
- When $\angle BAC$ is a right angle the following are true:
 - $m \angle DAB$ is equal to $m \angle ACB$,
 - $m \angle DAC$ is equal to $m \angle ABC$, and
 - $\triangle BAC$, $\triangle BDA$ and $\triangle ADC$ are similar.
- When the length of segment \overline{AB} equals the length of segment \overline{AC} , $\triangle ADB$ is congruent to $\triangle ADC$.

- When the length of segment \overline{AB} equals the length of segment \overline{AC} , the area of $\triangle ADB$ is equal to the area of $\triangle ADC$.
- 2. During the exploration of the altitude \overrightarrow{AD} , you should have seen that point *D* did not always exist. Explain why this happened. How could you have done this construction differently to ensure that point *D* was displayed for any $\triangle ABC$?

Based on the construction, it is possible to move point A so that the line perpendicular to side \overline{BC} through point A does not intersect \overline{BC} . This construction can be modified by having students construct a line \overline{BC} and define the point D to be on \overline{BC} instead of \overline{BC} . The students can then hide \overline{BC} if desired.

3. Make a conjecture about any special relationships that exist between a triangle and a **median** of the triangle. Be sure to identify any relationships that exist when $\triangle ABC$ has specific properties. Explain your answers and be prepared to demonstrate.

Conjectures that the students might develop include, but are not limited to, the following:

- The median will always divide ΔABC into two triangles, ΔAEB and ΔAEC, having equal areas.
- When \overline{AB} equals \overline{AC} , $\triangle AEB$ is congruent to $\triangle AEC$.

4. Make a conjecture about any special relationships that exist between a triangle and an **angle bisector** of the triangle. Be sure to identify any relationships that exist when $\triangle ABC$ has specific properties. Explain your answers and be prepared to demonstrate.

Conjectures that the students might develop include, but are not limited to, the following:

- The ratio $\frac{BF}{FC}$ is equal to the ratio $\frac{AB}{AC}$.
- When the length of segment \overline{AB} equals the length of segment \overline{AC} , ΔAFB is congruent to triangle ΔAFC .
- When the length of segment \overline{AB} equals the length of segment \overline{AC} , the area of $\triangle AFB$ is equal to the area of $\triangle AFC$.

5. Make a conjecture about the relationship between an altitude, median, and angle bisector constructed from the same vertex of a triangle. Be sure to identify any relationships that exist when $\triangle ABC$ has specific properties. Explain your answers and be prepared to demonstrate.

Conjectures that the students might develop include, but are not limited to, the following:

- When ∠BAC is a right angle, the angle bisector AF will also bisect ∠DAE (the angle formed by the altitude and the median from point A).
- When the length of segment \overline{AB} equals the length of segment \overline{AC} , points *D*, *E* and *F* coincide.

