Activity 18

Objectives

－To investigate the special properties of an altitude，a median，and an angle bisector
－To reinforce the differences between an altitude，a median，and an angle bisector

Cabri ${ }^{\circledR}$ Jr．Tools

Altitude，Median， and Angle Bisector of a Triangle

Introduction

Altitudes，medians，and angle bisectors are common structures used to study triangles in geometry．In this activity，you will construct these special segments（lines） of a triangle using their definitions．You will look at how an altitude，a median，and an angle bisector divide the area of a triangle．

This activity makes use of the following definitions：
Altitude of a triangle－a segment or line drawn from a vertex perpendicular to the opposite side（or an extension of that side）of the triangle．A triangle has three altitudes．

Median of a triangle－a segment drawn from a vertex to the midpoint of the opposite side of the triangle．A triangle has three medians．

Angle bisector－a line（or ray）that passes through the vertex of an angle to form two congruent angles．

Construction

Construct an altitude，a median，and an angle bisector of a triangle．
Δ Draw an acute triangle，$\triangle A B C$ ，in the center of the screen．
4－
Construct the altitude $\overline{A D}$ by constructing a line perpendicular to side $\overline{B C}$ that passes through and is defined by point A ．
－A Construct and label point D ，the intersection of the altitude with side $\overline{B C}$ ．
A Construct and label the midpoint（point E ）of side $\overline{B C}$ ．
\rightarrow Construct the median $\grave{\mathrm{AE}}$ ．

Construct the angle bisector of $\angle B A C$.
Construct and label the intersection of the angle bisector with side $\overline{B C}$ point F.

Exploration

(E) 0

Show $\grave{A D}$ and hide $\grave{A E}$ and $\grave{A F}$. Explore the altitude $\overrightarrow{A D}$ by dragging the sides and vertices of $\triangle A B C$. Use various measurement tools (Distance and Length, Angle, Area) and observe any relationships that exist between $\triangle A B C, \triangle A D B, \triangle A D C$ and their parts. Be sure to investigate these relationships when $\triangle A B C$ is a special triangle (acute, right, obtuse, scalene, isosceles, and equilateral).

Show $\grave{A} \overrightarrow{A E}$ and hide $\grave{A D}$ and $\grave{A F}$. Explore the median $\overline{A E}$ by dragging the sides and vertices of $\triangle A B C$. Use various measurement tools and observe any relationships that exist between $\triangle A B C, \triangle A E B, \triangle A E C$ and their parts. Be sure to investigate these relationships when $\triangle A B C$ is a special triangle.

min

Show $\overleftarrow{A F}$ and hide $\overleftarrow{A D}$ and $\overleftrightarrow{A E}$. Explore the angle bisector $\overleftrightarrow{A F}$ by dragging the sides and vertices of $\triangle A B C$. Use various measurement tools and observe any relationships that exist between $\triangle A B C, \triangle A F B, \triangle A F C$ and their parts. Be sure to investigate these relationships when $\triangle A B C$ is a special triangle.

Show $\overleftrightarrow{A D}, \overleftrightarrow{A E}$ and $\overleftrightarrow{A F}$ and explore the relationship among the altitude, median, and angle bisector constructed from the same vertex. Use various measurement tools and observe any relationships that exist among these lines, $\triangle A B C$, and the triangles formed by these lines and the side $\overline{B C}$ (for example $\triangle A D E$).

Questions and Conjectures

1. Make a conjecture about any special relationships that exist between a triangle and an altitude of the triangle. Be sure to identify any relationships that exist when $\triangle A B C$ has specific properties. Explain your answers and be prepared to demonstrate.
2. During the exploration of the altitude $\overleftrightarrow{A D}$, you should have seen that point D did not always exist. Explain why this happened. How could you have done this construction differently to ensure that point D was displayed for any $\triangle A B C$?
3. Make a conjecture about any special relationships that exist between a triangle and a median of the triangle. Be sure to identify any relationships that exist when $\triangle A B C$ has specific properties. Explain your answers and be prepared to demonstrate.
4. Make a conjecture about any special relationships that exist between a triangle and an angle bisector of the triangle. Be sure to identify any relationships that exist when $\triangle A B C$ has specific properties. Explain your answers and be prepared to demonstrate.
5. Make a conjecture about the relationship between an altitude, median, and angle bisector constructed from the same vertex of a triangle. Be sure to identify any relationships that exist when $\triangle A B C$ has specific properties. Explain your answers and be prepared to demonstrate.

Teacher Notes

Activity 18

Objectives

- To investigate the special properties of an altitude, a median, and an angle bisector
- To reinforce the differences between an altitude, a median, and an angle bisector

Cabri® Jr. Tools

Additional Information

You may want to break your dass into small groups and assign each group a different exploration. Each group can report its findings back to the class.

Answers to Questions and Conjectures

1. Make a conjecture about any special relationships that exist between a triangle and an altitude of the triangle. Be sure to identify any relationships that exist when $\triangle A B C$ has specific properties. Explain your answers and be prepared to demonstrate.

Conjectures that the students might develop include, but are not limited to, the following:

- When vertex A moves along a path parallel to side $\overline{B C}$, the distance $A D$ remains constant.
- An altitude falls outside the triangle when either $\angle A B C$ or $\angle A C B$ are obtuse.
- The altitude of a triangle is one of its sides when either $\angle A B C$ or $\angle A C B$ are
 right angles.
- When $\angle B A C$ is a right angle the following are true:
- $m \angle D A B$ is equal to $m \angle A C B$,
- $m \angle D A C$ is equal to $m \angle A B C$, and
- $\triangle B A C, \triangle B D A$ and $\triangle A D C$ are similar.
- When the length of segment $\overline{A B}$ equals the length of segment $\overline{A C}, \triangle A D B$ is congruent to $\triangle A D C$.
- When the length of segment $\overline{A B}$ equals the length of segment $\overline{A C}$, the area of $\triangle A D B$ is equal to the area of $\triangle A D C$.

2. During the exploration of the altitude $\overleftrightarrow{A D}$, you should have seen that point D did not always exist. Explain why this happened. How could you have done this construction differently to ensure that point D was displayed for any $\triangle A B C$?

Based on the construction, it is possible to move point A so that the line perpendicular to side $\overline{B C}$ through point A does not intersect $\overline{B C}$. This construction can be modified by having students construct a line $\overleftrightarrow{B C}$ and define the point D to be on $\overleftrightarrow{B C}$ instead of $\overline{B C}$. The students can then hide $\overleftrightarrow{B C}$ if desired.

3. Make a conjecture about any special relationships that exist between a triangle and a median of the triangle. Be sure to identify any relationships that exist when $\triangle A B C$ has specific properties. Explain your answers and be prepared to demonstrate.

Conjectures that the students might develop include, but are not limited to, the following:

- The median will always divide $\triangle A B C$ into two triangles, $\triangle A E B$ and $\triangle A E C$, having equal areas.
- When $\overline{A B}$ equals $\overline{A C}, \triangle A E B$ is congruent to $\triangle A E C$.

4. Make a conjecture about any special relationships that exist between a triangle and an angle bisector of the triangle. Be sure to identify any relationships that exist when $\triangle A B C$ has specific properties. Explain your answers and be prepared to demonstrate.

Conjectures that the students might develop include, but are not limited to, the following:

- The ratio $\frac{B F}{F C}$ is equal to the ratio $\frac{A B}{A C}$.
- When the length of segment $\overline{A B}$ equals the length of segment $\overline{A C}, \triangle A F B$ is congruent to triangle $\triangle A F C$.
- When the length of segment $\overline{A B}$ equals the length of segment $\overline{A C}$, the area of
 $\triangle A F B$ is equal to the area of $\triangle A F C$.

5. Make a conjecture about the relationship between an altitude, median, and angle bisector constructed from the same vertex of a triangle. Be sure to identify any relationships that exist when $\triangle A B C$ has specific properties. Explain your answers and be prepared to demonstrate.

Conjectures that the students might develop include, but are not limited to, the following:

- When $\angle B A C$ is a right angle, the angle bisector $\overleftrightarrow{\mathrm{AF}}$ will also bisect $\angle D A E$ (the angle formed by the altitude and the median from point A).

- When the length of segment $\overline{A B}$ equals the length of segment $\overline{A C}$, points D, E and F coincide.

