Teacher Notes

Activity 7

Stopping Distances

Problem

Two factors that affect the distance that is required to stop a moving vehicle are the reaction time of the driver and the velocity of the car. In this activity, students will collect data from the Internet and find a model for the total distance required to stop a moving vehicle.

Perception-Reaction Distance Exploration

1. through 11 .

Perception-Reaction Distance Analysis

1. A linear equation will model the data.
2. $r(x)=2.2 x$. The constant is very near to 0 .
3. The equation fits the data very well.
4. The slope is 2.2. For each additional mph , an additional 2.2 feet is needed to stop the vehicle.
5. The y-intercept is 0 . At $0 \mathrm{mph}, 0$ feet are needed to stop the vehicle.

Braking Distance Exploration

1. through 4.

Braking

Braking Distance Analysis

1. Quadratic or exponential.
2. $D=k v^{2}$.
3. $b(x)=0.048 x^{2}+0.0001 x+0.157$.
4. They should be 0 . The equation would be $D=.048 v^{2}$.
5. The equation fits the data very well.

Total Stopping Distance Exploration

1. through 4.

Total

Total Stopping Distance Analysis

1. Quadratic.
2. $D=.048 v^{2}+2.2 v$. Students should note that this is the sum of the equations $r(x)$ and $b(x)$.
3. The equation fits the data very well.
4. $0.048(55)^{2}+2.2(55)=266.2$ feet
5. $280=0.048 v^{2}+2.2 v$ so $v=56.8 \mathrm{mph}$. Students can solve the equation by selecting Math Box and typing solve $\left(280=0.048 v^{2}+2.2 v, ~ v\right)$.
