$\mathcal{W} \mathcal{A L K} \mathcal{M} \mathcal{Y} \mathcal{W} \mathcal{A L K}$

Investigating slope and speed through motion
\mathcal{A} two-part activity that uses a CBR to develop the notion of slope and y-intercept through various walking activities. Part \mathcal{A} develops a general notion of how changes in walking are reflected in various grapfical representations. Part \mathcal{B} formalizes the ide as of (1) slope and its relationship to speed and (2) y-intercept and its relationsfip to starting point.

Mathematical Concepts Explored - Relating slope and a graph to a physical activity	Tecfnology Ulsed - Group set TI83+and CBR - Teacher's presentation calculator with overfiead panel and CBR	Commands/Functions Ultilized - TI83+ Program: $\mathcal{M O} \mathcal{V E}^{\mathcal{E}}$ - Trace function

California Mathematics Content Standards Addressed by this Activity $5^{t h}$ grade

- Alge bra and Functions 1.4-Identify and grapf ordered pairs
- Alge bra and Functions 1.5 - Solve problems involving line ar functions with integer values; write the equation and grapf the resulting ordered pairs
$6^{\text {th }}$ grade
- Alge bra and Functions 2.2-Understand that rate is a measure of one quantity per unit value of another quantity.
- Alge bra and Functions 2.3 - Solve problems involving rates, average speed, distance, and time
$7^{\text {th }}$ grade
- Alge fra and Functions 1.5-Represent quantitative relationsfips grapfically; interpret meaning of graphs or parts of graphs
- Alge bra and Functions 3.3 - Graph line ar functions and understand concept of slope
S tudents should have experience in graphing in the coordinate plane. An understanding of ratio as it relates to slope (change in y over change in x) would be helpful.

Teacher will...
Student will...

Part I Set up motion detector, overfead, and teacher workstation. Explain the hardware set up to students and give a brief explanation on how the motion sensor works.	Participate in discussion.
Pass out worksheet 1 . Student Walking Conditions: Watker 1-Start 1 meter from the CBR and walk away at a slowsteady rate. Walker 2-Start at opposite end of room and walk towards CBR at a fast steady rate. After students have made and shared predictions for each watk, acquire graph. Discuss generalcharacteristics of the graph. Elic it from students where the walker is stopped, the relative slant of the line and any other relevant parts of the graph. Ulse trace function to get 4 representative data points. Data points should be significant graph events (places where slope is changing) Slopes will be calculated in part 2. The Move Program places the time and distance data into $L 1$ and $L 2$. To recall the graph for Part 2, this data should be saved into a group named appropriately (e.g. Walk $2 \mathcal{P 3}$ could represent walker 2 period 3)	For each walk: - Kave students sketch a prediction about the graph and share the ir prediction with a partner - Kave student volunteers walk according to the conditions in the teacher section. - observe the graph of the motion and sketch the graph on the worksheet - copy the data point information for walk 1 and 2. Note: slope will be calculated in part 2 (after the data has been collected of all walks)
Tell students they will be exploring motion graphs in small groups. Each group will need a walker, a recorder, some one to hold the motion sensor and someone to hold the grapfing calculator. Distribute the equipment and go through the process of running the program Move. Make sure the motion sensors are activated and students know how to turn the sensors off. Students will need a large open are a to collect data (outside works really well). Allow about 20 minutes for students to recreate the graphs and have some time for exploration.	Student will make prediction about how to create the four graphs on the worksheet. In groups, students will collect motion data and check their predictions.

Page 4 of 4
Walk My Walk

