\qquad
\qquad

Part 1 - Numerically and Graphically Investigate Integral

Let $F(x)=\int_{a}^{x} f(x) d x$.

1. Animate the x on page 1.4 by pressing the play button $(\$)$ to observe when $F(x)$ is increasing and decreasing. Describe $f(x)$ when $F(x)$ is increasing.
2. If $f(x)=\sin (x), a=\frac{\pi}{2}$, fill in the table for the given values of x.

x	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$F(x)$						

3. What function fits these values?
4. Grab and move point a. Observations the effects of $F(x)$. Record these observations. Also if a and x are the limits of integration, is the integral negative when $x<a$?
5. $\int_{\pi}^{\pi / 2} \sin (x) d x=$ \qquad
6. On page 2.2, press MENU > Trace > Graph Trace. Click the point (x, area) one time. When you press play there will be a trail of points left behind the animated point. These points are points on $F(x)$ where $F(x)=\int_{a}^{x} f(x) d x$. What is the amplitude of the integral of $1.5 \cos (2 x)$?
7. Describe your observations when you change the value of a. How does changing the value of a effect $F(x)$?
8. The graph of the integral is increasing when the function (the integrand) is what?

Part 2 - Curve Sketching and Kinematic Calculus

On the following graphs, sketch the corresponding kinematic graph. Make your prediction before revealing and confirming your solution.

1. a. What is the definite integral of acceleration with respect to time?
b. The definite integral of velocity is
2. Describe what is physically occurring in this graph.

3. The integral of a parabola is \qquad
The integral of a constant function is \qquad
The integral of an oblique line is \qquad
4. Predict the approximate final position for the two graphs below. Note the left graph has an initial
 position of 0.5 m and the right is at 1.5 m with $t=0 \mathrm{~s}$.
a.

b.

