According to the Standards:
Instructional programs from preK-grade 12 should enable students to:

- Recognize and use connections among mathematical ideas
- Use the language of mathematics to express mathematical ideas precisely
- Select, apply and translate among mathematical representations to solve problems

In grades $\mathbf{9 - 1 2}$ students should

1. Students should develop an increased capacity to link mathematical ideas and a deeper understanding of how more than one approach to the same problem can lead to equivalent results.

Calculus Scope and Sequence: Infinite Series
Keywords: convergence, ratio test
Description: This activity will demonstrate the use of the ratio test to discuss the convergence of an infinite series.

The Ratio Test: For any series $\sum_{n=1}^{\infty} a_{n}$ If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L$ then:

- $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent when $L<1$
- $\sum_{n=1}^{\infty} a_{n}$ is divergent when $L>1$
- The ratio test provides no information when $L=1$

Study the convergence of the series: $\sum_{n=0}^{\infty}(-1)^{n+1} \frac{2^{n}}{n!}$

- The limit function is found in F3-Calc-\#3 and requires three arguments: $\lim (f u n c t i o n$, variable, limiting value)
- The Absolute Value is found in CATALOG, it is the first item
- The factorial key (!) is found in $2^{\text {nd }}-5$ (MATH)-Probability-\#1
- $\quad \infty$ key is found on the keyboard: <diamond> - catalog

Store the series formula in $\mathrm{Y}=$ using x , in place of n for convenience

Evaluate the limit:

Thus, by the conditions of the ratio test, the series is absolutely convergent

