# **Absolute Value Function**



## **Student Worksheet**

7 8 9 10 11 12









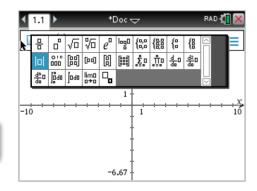
# Introduction

The absolute value of a function is defined as the 'unsigned' portion of the number.

 $|x| = \begin{cases} x & x \le 0\\ x & x \ge 0 \end{cases}$ 

The sign or signum (Latin for sign) is defined as:

$$sign(x) = \begin{cases} -1 & x < 0\\ 0 & x = 0\\ 1 & x > 0 \end{cases}$$


The above definitions are related by  $|x| = x \cdot sign(x)$ 

# **Exploring Graphs**

Open a new TI-Nspire Document and insert a Graph Application.

Sketch the graphs of y = x and y = |x| on the same set of axes.

The equations template contains the absolute value notation or enter: abs(x)



-3

## Question: 1.

Comment on the relationship between the graphs of y = x and y = |x|.

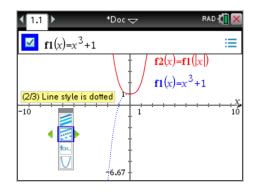
## Question: 2.

Graph and compare each of the following:

a. 
$$y = x^2 - 4$$
 and  $y = |x^2 - 4|$   
b.  $f(x) = x^3 - 3$  and  $|f(x)| = |x^3 - 3|$   
c.  $g(x) = \sqrt{(2-x)} - 2$  and  $|g(x)|$   
d.  $h(x) = x^3 - 2x^2 - 4x + 1$  and  $|h(x)|$   
e.  $k(x) = \frac{1}{(x-2)^2} - 3$  and  $|k(x)|$ 

#### **Question: 3.**

Generalise your findings with regards to what happens to the graph of f(x) when we want to sketch the graph of |f(x)|.


Author: Bozenna Graham (C) Texas Instruments 2017. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.



#### Question: 4.

Graph and compare each of the following:

- a.  $f(x) = x^2 2x + 3$  and  $f(|x|) = |x|^2 2|x| + 3$
- b.  $g(x) = x^3 + 1$  and  $g(|x|) = |x|^3 + 1$
- c.  $h(x) = 2^{x} 3$  and  $h(|x|) = 2^{|x|} 3$
- d.  $k(x) = \frac{1}{x-1}$  and  $k(|x|) = \frac{1}{|x|-1}$
- e.  $p(x) = \log_e(x)$  and  $p(|x|) = \log_e |x|$



#### Calculator Tip!

ଡି

Time Saving Tip:

Enter the original equation in:  $f_1(x)$  and then use:  $f_2(x) = f_1(|x|)$ 

#### Attributes:

Attributes refers to some of the features or qualities of objects such as graphs. With your mouse over a graph press: **Ctrl + Menu** and select **Attributes**. Change the original function to a dotted

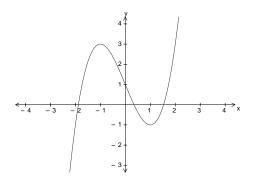
#### Question: 5.

Generalise your findings with regards to the graphs of f(x) and f(|x|).

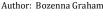
#### Question: 6.

The graph of the function:  $f(x) = 2^{|x|}$  can be generated by defining a piece-wise function rather than using the absolute value function. (Refer to the definition of |x| in the introductory section of this activity.)

The function:  $f(x) = 2^{|x|}$  can be defined as:  $f(x) = \begin{cases} 2^{-x}, & x \le 0\\ 2^{x}, & x > 0 \end{cases}$ 


Use your graphics calculator to sketch this piecewise function using the piecewise function entry. Use the absolute value function to generate a second graph to check your answer. Are the two graphs the same?

#### Question: 7.


Given the graph of:  $f(x) = \sin x$ ,  $-2\pi \le x \le 2\pi$ , sketch the graphs of |f(x)| and f(|x|) without a calculator. Check your answers using your calculator.

#### Question: 8.

For the graph of f(x) shown opposite, sketch a graph of f(|x|) and |f(x)|.



© Texas Instruments 2018. You may copy, communicate and modify this material for non-commercial educational purposes provided Authall acknowledgements associated with this material are maintained.



