Activity Overview

In this activity, students will explore the focus/directrix and reflection properties of parabolas. They are led to conjecture each property and then prove them analytically.

Concepts

- Parabolas as a locus of points
- The distance formula in the coordinate plane
- Elementary algebra and plane geometry
- The derivative as the slope of a tangent line

Teacher Preparation

This activity may be used by Geometry, Algebra 2, and Elementary Calculus students. A simple derivative is used only in the proof of the reflection property (Problem 6) and can easily be circumvented by using the TI-Nspire angle measurement tool.

- Students should be familiar with the following geometry concepts and facts: the shape of the graph of a parabola; the formula for calculating the distance between two points in the plane; vertical angles of two intersecting lines are equal, and the altitude at vertex A of an isosceles triangle bisects the angle at A.
- The screenshots on pages 2-4 demonstrate expected student results. Refer to the screenshots on page 5 for a preview of the student .tns file.
- To download the .tns file and student worksheet, go to http://education.ti.com/exchange and enter "8255" in the search box.

Classroom Management

- This activity is designed to have students explore individually or in pairs. However, an alternate approach would be to use the activity in a whole-class format. By using the computer software and the questions found on the student worksheet, you can lead an interactive class discussion about these parabola properties.
- Some of the pages are vertically split: G\&G on the left and L\&S on the right. Calculations that drive the implementations are hidden in the spreadsheet; the "split" is designed to expose only Column A. Caution students to leave the rest of the spreadsheet alone.
- The student worksheet is intended to guide students through the main ideas of the activity. It also serves as a place for students to record their answers. Alternatively, you may wish to have the class record their answers on a separate sheet of paper, or just use the questions posed to engage a class discussion.

TI-Nspire ${ }^{\text {m }}$ Applications
Graphs \& Geometry (G\&G), Lists \& Spreadsheet (L\&S), Notes

II-nspire

The first four problems in this activity lead students through the derivation of the formula for a parabola from its geometric definition. They also aim to test students' understanding of the concepts uncovered by the derivation. Problems 5 and 6 are designed to help students explore the reflection property of parabolas.

Problem 1 - Locus of points equidistant from a fixed point and a fixed line
On page 1.2, students are shown a graph with a point $F(0, p)$ on the y-axis, a point D on a line L given by the equation $y=-p$, and a point A above D. They will measure the length of $F A$ and $D A$, and observe what happens when dragging points F (the focus) or D (which controls point A).

Solutions

1. The lengths $F A$ and $D A$ are equal for all points A.
2. The locus of points A is a parabola with vertex at the

Page 1.2 origin. If F is above the x-axis, the parabola opens up; if F is below the x-axis, it opens down.
3. Answers may vary.

Problem 2 - Derive a formula for the locus of point A
The static (points F and D are locked in place) diagram shown in Problem 2 is the same as that in Problem 1, with the points labeled: $F(0, p), A(x, y)$, and D. Students will use this diagram to derive the standard form for the equation of a parabola with focus $F(0, p)$ and directrix $y=-p$.

Solutions

Page 2.1

1. $(x,-p)$
2. $F A=\sqrt{(x-0)^{2}+(y-p)^{2}} \quad D A=\sqrt{(x-x)^{2}+(y+p)^{2}}$
$=\sqrt{x^{2}+y^{2}-2 p y+p^{2}} \quad=\sqrt{y^{2}+2 p y+p^{2}}$
3. $\sqrt{x^{2}+y^{2}-2 p y+p^{2}}=\sqrt{y^{2}+2 p y+p^{2}}$

$$
\begin{aligned}
x^{2}+y^{2}-2 p y+p^{2} & =y^{2}+2 p y+p^{2} \\
x^{2} & =4 p y \\
y & =\frac{x^{2}}{4 p}
\end{aligned}
$$

Problem 3 - Test your understanding

Before beginning this problem, ensure that students have derived the correct formula from Problem 2; i.e, $y=\frac{x^{2}}{4 p}$. They will use this equation to identify the coordinates of the focus for given parabolas. Page 3.1 enables them to test their answers by entering the value of p into cell A1 of the spreadsheet and defining f1 (x) to be the equation of the parabola.

Page 3.1

Solutions

1. $F(0,3)$
2. $F(0,-9)$

Problem 4 - Target practice

Here, students again use the formula to explore parabolas-this time identifying the equation of a parabola with vertex at the origin that passes through a certain point, T (restricted to integer lattice points). Again, they can test their equations using the graph and spreadsheet on page 4.1.
(Note: Fractions are sometimes not recognized as numeric input into the spreadsheet. If a student obtains a value of p that is a fraction, have them enter it into the spreadsheet in its decimal form. If the fraction's decimal form is a repeating decimal such as $2 / 3$, entering it as

Page 4.1
 "2.0/3" is acceptable.)
The exercises ask students to generalize to a parabola with the point (h, k) its vertex (not the origin). The exercises should be solved using paper and pencil, with all work shown.

Solutions

1a. $(h, k+p)$
2. Rewrite the equation in vertex form.
b. $y=k-p$
c. $y=\frac{(x-h)^{2}}{4 p}+k$

$$
\begin{aligned}
16 y & =x^{2}-8 x+96 & & \text { clear the fractions } \\
16 y-96+16 & =x^{2}-8 x+16 & & \text { complete the square } \\
16(y-5) & =(x-4)^{2} & & \\
y & =\frac{(x-4)^{2}}{16}+5 & &
\end{aligned}
$$

vertex: $(4,5) \quad$ focus: $(4,9) \quad$ directrix: $y=1$

II-nspire

Problem 5 - The reflection property

On page 5.1, students are shown a graph of a parabola with focus F and tangent line to the parabola at point A. They are asked to measure $\angle F A R$ and $\angle S A Q$, grab and drag points F or D, and observe how the angles of incidence and reflection are related.

Note: If point D is dragged into the second quadrant, the angle measurement tool calculates the measure of the "wrong angle." Thus, negative x-axis has been

Page 5.1 reduced in length.

Solutions

1. $m \angle F A R=m \angle S A Q$ for all points A
2. All rays emanating from the focus will exit the surface of the parabola on a path parallel to the axis of symmetry.
3. Answers will vary.

Problem 6 - A proof of the reflection property ${ }^{1}$

Page 6.1 displays the same diagram as 5.1 , with an additional segment shown. The exercises walk students through a proof of the reflection property (in terms of the diagram, the proof that $m \angle F A R=m \angle S A Q$).

Solutions

1. $\triangle F A D$ is isosceles
2. For non-calculus students: Since $m \angle D R A=90^{\circ}$,

Page 6.1
$\overline{F D}$ and the tangent line are perpendicular.
For calculus students: Slope of $\overline{F D}=-\frac{2 p}{a}$; Slope of tangent line at point $A=f^{\prime}(a)=\frac{a}{2 p}$.
The slopes are negative reciprocals, so $\overline{F D}$ and the tangent line are perpendicular.
3. $\overline{A R}$ is an altitude of $\triangle F A D$ at vertex A.
4. The altitude of an isosceles triangle bisects the vertex angle, so $m \angle F A R=m \angle D A R$.
5. Vertical angles are congruent, so $m \angle D A R=m \angle S A Q$.
6. By the transitive property of angle congruence, $m \angle F A R=m \angle S A Q$.

[^0]
What's My Locus? - ID: 8255

(Student)TI-Nspire File: PreCalcAct2_WhatsMyLocus_EN.tns

[^0]: ${ }^{1}$ Williams, Robert C., A Proof of the Reflective Property of the Parabola, American Mathematical Monthly, (1987) 667-668.

