The Trigonometric Derivative

\qquad
\qquad

Problem 1 - The Derivative of the Sine Function
Use the definition of derivative $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{\sin (a+h)-\sin (a)}{h}$ to set up the limit to find the derivative of $f(x)=\sin (x)$. The identity for the sine of the sum of two angles $\sin (a+b)=\sin (a) \cdot \cos (b)+\sin (b) \cdot \cos (a)$ is needed to simplify the limit.

- What is the limit expression?

In the $Y=$ screen, enter the equation $y=\frac{\cos (x)-1}{x}$. In the Table Setup menu, change the initial x to -0.1 and Δx to 0.025 . Now look at the table of values.

- Why is the function undefined at $x=0$?
- What do you think the limit is?

Use the Limit command (F3:Calc>3:Limit) to confirm the limit of this ratio.

- What do you get? How does it compare to the answer above?

Substitute your answer and $\lim _{h \rightarrow 0} \frac{\sin (h)}{h}=1$ into the original limit you found for the derivative of $\mathrm{f}(x)=\sin (x)$.

- What is the limit?

Use the Derivative command (F3:Calc>1:Derivative)to confirm this.

- What is the derivative of $\mathrm{f}(x)=\sin (x)$?

Problem 2 - The Derivative of the Cosine Function

Use the definition of derivative and set up the limit to find the derivative of $f(x)=\cos (x)$. The identity for the sine of the sum of two angles $\cos (a+b)=\cos (a) \cdot \cos (b)-\sin (b) \cdot \sin (a)$ is needed to simply the limit.

- What is the limit expression?

Substitute the limit values of $\frac{\cos (x)-1}{x}$ and $\frac{\sin (h)}{h}$ found in Problem 1 into the limit.

- What is the value of the limit?

The Trigonometric Derivative

Use the Limit command to find the above limit.

- What do you get? How does it compare to your answer above?

Use the Derivative command to confirm your answer.

- What is the derivative of $f(x)=\cos (x)$?

Problem 3 - Derivative of the Tangent Function

To find the derivative of the tangent function, write the tangent in terms of sine and cosine.

- Use the quotient rule to find the derivative of this expression.

Simplify the result and check your answer suing the Derivative command to find the derivative of $\tan (x)$.

The derivative of tangent is usually written in terms of the reciprocal trigonometric functions, cosecant, secant, or cotangent.

- Write the derivative of the tangent in terms of one of these reciprocals.

Extension - The Derivative of $\boldsymbol{y}=\boldsymbol{\operatorname { s i n }}(u)$ and $\boldsymbol{y}=\boldsymbol{\operatorname { c o s }}(u)$

What happens for more complicated sine or cosine expressions? Use the Derivative command for the following functions.

- $f(x)=\sin (12 x)$

$$
f^{\prime}(x)=
$$

- $g(x)=\cos (5 x)$ $g^{\prime}(x)=$

What do you think will be the general rule for the derivative of $y=\sin (u(x))$ and $y=\cos (u(x))$. Use the derivative command to get the result. Be sure to use $u(x)$ in the command.

- $\frac{d}{d x}(\sin (u(x))=$
- $\frac{d}{d x}(\cos (u(x)))=$

Now use the derivative command for the following more complicated expressions. Be careful with your parentheses.

- $h(x)=\sin ^{3}(4 x) \quad h^{\prime}(x)=$
- $j(x)=\cos ^{7}(3 x) \quad j^{\prime}(x)=$

