
Name _____

In this activity, you will investigate the effect of changing the values of a and b in the polar equations $r=a\pm b*sin(\theta)$ and $r=a\pm b*cos(\theta)$, where a>0 and b>0. You will also explore the relationship between the polar curve $r=a\pm b*sin(\theta)$ (or $r=a\pm b*cos(\theta)$) and the sinusoidal function f(x)=a+b*sin(x) (or $f(x)=a\pm b*cos(x)$).

To set your calculator to Polar mode, press mode and select **POLAR** as shown to the right. Also set your graphing calculator to Radian mode by selecting **RADIAN** on this screen as well.

To graph a polar equation on your graphing calculator, press y= and enter your equation. The x, t, θ, n key produces θ in your equation when you are in Polar mode.

1. Graph the following by editing r1 to observe each graph. Press \overline{zoom} and select 4: ZDecimal.

i)
$$r1 = 1 + 1 * sin(\theta)$$

ii)
$$r1 = 1 - 1 * sin(\theta)$$

$$iii) r1 = 2 + 2 * sin(\theta)$$

$$iv) r1 = 2 - 2 * sin(\theta)$$

$$v) r1 = 3 + 3 * sin(\theta)$$

vi)
$$r1 = 3 - 3 * sin(\theta)$$

Why do you think these graphs are called cardioids?

- 2. What similarities do you notice about the equations of the six graphs?
- 3. How do the addition and subtraction signs affect the graphs?
- 4. Graph the following by editing r1 to observe each graph. Press r1 and select 4: ZDecimal.

i)
$$r1 = 1 + 1 * cos(\theta)$$

ii)
$$r1 = 1 - 1 * cos(\theta)$$

$$iii) r1 = 2 + 2 * cos(\theta)$$

iv)
$$r1 = 2 - 2 * cos(\theta)$$

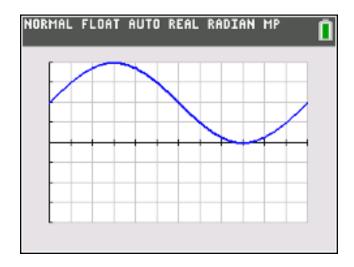
$$v) r1 = 3 + 3 * cos(\theta)$$

vi)
$$r1 = 3 - 3 * cos(\theta)$$

How are the equations different from those in **Problem 1**? How does this difference affect the graph?

Limaçons have different shapes depending on the ratio $\frac{a}{b}$. We have already seen the cardioid graph that is the result when a=b (or $\frac{a}{b}=1$).

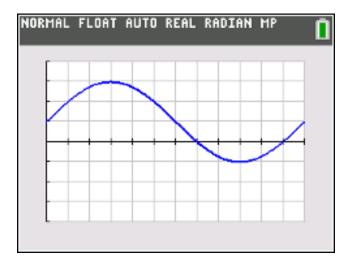
5. Graph the following by editing r1 to observe each graph. Complete the table with the values of a, b, and $\frac{a}{b}$ as you observe each graph.


Limaçon	а	b	$\frac{a}{b}$
$i) r1 = 1 + 3 * cos(\theta)$			
<i>ii</i>) $r1 = 1 + 2 * cos(\theta)$			
$iii) r1 = 3 + 2 * cos(\theta)$			
$iv) \ r1 = 2 + 1 * cos(\theta)$			
$v) r1 = 3 + 1 * cos(\theta)$			

- 6. If the ratio $\frac{a}{b} < 1$, the limaçon has a special feature. Describe the shape of the limaçon.
- 7. One of the polar curves in the table above has a ratio which satisfies $1 < \frac{a}{b} < 2$. Write an equation of another polar curve for which $1 < \frac{a}{b} < 2$. Graph your limaçon and describe the shape of the limaçon.
- 8. Write an equation of a limaçon in which the ratio $\frac{a}{b} > 2$. Graph your limaçon and describe the shape of the limaçon.

Name _____

9. The graph of the sinusoidal function f(x) = 2 + 2 * sin(x) is shown below. The *x*-scale for the gridlines is $\pi/6$.

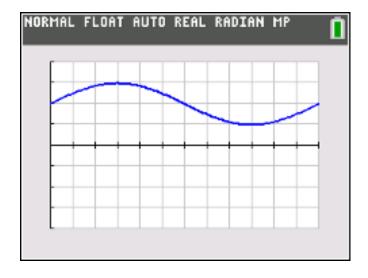


Graph the limaçon given by $r1 = 2 + 2 * sin(\theta)$. Press 2nd zoom to access format. In the first row, use the right arrow to highlight **PolarGC** and press enter. Press trace and then the right arrow to move your cursor. Observe the change in the r and θ values.

On the interval from x = 0 to $x = 2\pi$ of the sinusoidal function, the maximum occurs at $x = \frac{\pi}{2}$ and the minimum occurs at $x = \frac{3\pi}{2}$.

How do the y -values at these two points correspond to the r -values on the cardioid?

10. The graph of the sinusoidal function f(x) = 1 + 2 * sin(x) is shown below. The x-scale for the gridlines is $\pi/6$.



Name	
Class	

Graph the limaçon given by $r1=1+2*sin(\theta)$. Press trace and then the right arrow to move your cursor. Observe the change in the r and θ values. Explain why the polar curve $r=1+2sin(\theta)$ has an inner loop in the interval $\frac{7\pi}{6} \leq \theta \leq \frac{11\pi}{6}$.

11. The graph of the sinusoidal function f(x) = 2 + 1 * sin(x) is shown below. The x-scale for the gridlines is $\pi/6$.

Graph the limaçon given by $r1 = 2 + 1 * sin(\theta)$. Press trace and then the right arrow to move your cursor. Observe the change in the r and θ values. Explain why the polar curve does not contain the point located at the pole.