

Outbreak!

ID: XXXXX

Time required 15 minutes

Activity Overview

In this activity, students will explore a geometric sequence related to an outbreak of the flu, extrapolate to make predictions based on given data.

Topic: Sequences

• Finding nth term

Teacher Preparation and Notes.

• To download the student and solution worksheet, go to education.ti.com/exchange and enter "XXXXX" in the quick search box.

Associated Materials

- TIMath_PC_Wk1_Outbreak_TI-84.doc
- TIMath_PC_Wk1_OutbreakT_TI-84.doc

Suggested Related Activities

- Geometric Sequences and Series Activity Number 8682
- Geometric Series (TI-89) Activity Number 10236
- Spreading Doom Activity Number 10073

Step-by-step directions

Exploring the Data

The students will be given data for a flu epidemic and will use the data to create a scatter plot and answer questions about the data and associated graph.

The health clinic at a large school district has become concerned. It is apparent that there is an outbreak of a flu epidemic. Given below is a table indicating the number of students that have come down with the illness according to health office records for the last five days.

Day	Students
1	2
2	6
3	18
4	54
5	162

Record this data in L_1 and L_2 .

1. Construct a scatter plot and graph your data on the grid below.

Exploring the data

- 2. Describe the rate of change observed in the data and corresponding graph. increasing, geometric
- What term describes the type of sequence displayed in the "students" data column? Geometric
- Identify a term other than scatter plot which describes the type of graph? exponential

Extending the data

- How many students would you expect to come down with the illness on day 6?
 486
- 6. Assuming that this pattern will continue, develop an equation* that will relate the number of students, *y*, to any day, *k*.

$$y = 2 (3)^{k-1}$$

Summarizing the data

How many students total will have been affected by day 5?
 242

