6-7
 Explore End Behavior

End behavior is a description of the values of the function as x approaches positive infinity $(x \rightarrow+\infty)$ or negative infinity $(x \rightarrow-\infty)$.

Use with Lesson 6-7

Activity

Describe the end behavior of $f(x)=2 x^{3}-x^{2}-7 x+5$.
Enter $f(x)$ into your graphing calculator. Choose a large window, and graph.

Notice $f(x)$ appears to rise for positive x-values and fall for negative x-values.

Iry This

1. Consider the functions $g(x)=3 x^{3}-2 x^{2}+x+4, h(x)=\frac{1}{2} x^{3}+3 x^{2}+x-9$, and $k(x)=5 x^{3}-8 x^{2}-2 x+1$.
a. What do the functions $g(x), h(x)$, and $k(x)$ have in common?
b. Graph $g(x), h(x)$, and $k(x)$ on your graphing calculator, and describe the end behavior of each.
c. Make a Conjecture What can you say about the end behavior of functions of the same type as $g(x), h(x)$, and $k(x)$?
2. Consider the functions $a(x)=-3 x^{3}-2 x^{2}+x+4, b(x)=-\frac{1}{2} x^{3}+3 x^{2}+x-9$, and $c(x)=-5 x^{3}-8 x^{2}-2 x+1$.
a. What do the functions $a(x), b(x)$, and $c(x)$ have in common?
b. Graph $a(x), b(x)$, and $c(x)$ on your graphing calculator, and describe the end behavior of each.
c. Make a Conjecture What can you say about the end behavior of functions of the same type as $a(x), b(x)$, and $c(x)$?
3. Consider the functions $p(x)=3 x^{4}-x^{2}+x+4, r(x)=\frac{1}{2} x^{4}+3 x^{3}+x-9$, and $s(x)=5 x^{4}-8 x^{3}-2 x^{2}+1$.
a. What do the functions $p(x), r(x)$, and $s(x)$ have in common?
b. Graph $p(x), r(x)$, and $s(x)$ on your graphing calculator, and describe the end behavior of each.
c. Make a Conjecture What can you say about the end behavior of functions of the same type as $p(x), r(x)$, and $s(x)$?
4. Critical Thinking Compare your conjectures from Problems 1c, 2c, and 3c. What are the characteristics of a function that seem to affect the function's end behavior?
