\qquad
\qquad

Problem 1 - Properties of Parallelograms

We will begin this activity by looking at the definition of parallelogram and several properties of the parallelograms.

1. Define Parallelogram.
2. Parallelogram $Q U A D$ is shown on page 1.4. Drag point Q to two different positions and record the lengths of the segments in the table. Then, drag point U to two different positions and record the data in the same table.

Position	$\overline{\mathbf{Q U}}$	$\overline{\mathbf{U A}}$	$\overline{\mathbf{A D}}$	$\overline{\mathbf{D Q}}$
$\mathbf{1}$				
$\mathbf{2}$				
$\mathbf{3}$				
$\mathbf{4}$				

3. What do you notice about the lengths of opposite sides of a parallelogram?

Angles of a polygon that share a side are consecutive angles. Angles that do not share a side are called opposite angles.
4. Parallelogram $Q U A D$ is shown again on page 1.8. Drag point Q to four different positions and record the measurement of the angles in the table.

Position	$\angle Q$	$\angle \boldsymbol{U}$	$\angle A$	$\angle D$
$\mathbf{1}$				
$\mathbf{2}$				
$\mathbf{3}$				
$\mathbf{4}$				

5. What do you notice about consecutive angles of a parallelogram?
6. What do you notice about opposite angles of a parallelogram?

Properties of Parallelograms

Problem 2 - Diagonals of Parallelograms

For this problem, we will look at the properties of the diagonals of parallelograms.
7. Parallelogram QUAD is shown on page 2.2. Record the lengths of each segment in row 1 of the table. Then, drag point U to three different positions. Record the data in rows 2, 3, and 4.

Position	$\overline{Q R}$	$\overline{A R}$	$\overline{D R}$	$\overline{R U}$
$\mathbf{1}$				
2				
3				
4				

8. What do you notice about the diagonals of the parallelogram?

Problem 3 - Proving Parallelograms

In this problem, we will explore various properties and see if they guarantee that a quadrilateral is a parallelogram.
On page 3.3 is a quadrilateral with a pair of opposite sides that is congruent ($\overline{E X}$ and $\overline{N T}$). You are given the lengths of $\overline{N E}, \overline{E X}, \overline{X T}$, and $\overline{N T}$. You are also given the slopes of $\overline{N E}$, $\overline{E X}, \overline{X T}$, and $\overline{N T}$. Try to form a quadrilateral that is not a parallelogram with both pairs of opposite sides congruent by moving point X.
9. Does having both pairs of opposite sides congruent guarantee that the quadrilateral is a parallelogram? Draw an example or counterexample.

Properties of Parallelograms

On page 3.6, you are given one pair of opposite sides congruent ($\overline{A T}$ and $\overline{C S}$) and one pair of opposite sides parallel ($\overline{C A}$ and $\overline{S T}$). You are given the lengths of $\overline{A T}$ and $\overline{C S}$. You are also given the slopes of $\overline{C A}$ and $\overline{S T}$. Try to form a quadrilateral that is not a parallelogram by moving point A.
10. Does having one pair of opposite sides congruent and one pair of opposite sides parallel guarantee that the quadrilateral is a parallelogram? Draw an example or counterexample.

On page 3.9, you are given one pair of opposite sides parallel ($\overline{Y R}$ and $\overline{O U}$) Try to form a quadrilateral with opposite angles congruent that is not a parallelogram by moving point O. You are given the slopes of $\overline{Y R}, \overline{O U}, \overline{Y O}$, and $\overline{R U}$.
11. Does having one pair of opposite sides parallel and one pair of opposite angles congruent guarantee that the quadrilateral is a parallelogram? Draw an example or counterexample.

Problem 4 - Extending the Properties

For this problem,

1) Create any quadrilateral on page 4.2 and name it GEAR .
2) Find the midpoint of each side.
3) Connect the midpoints to form a quadrilateral.
12. What type of quadrilateral is formed after you connected the midpoints of GEAR?
13. How can you prove what type of figure is created by connecting the midpoints?
