Ų

Name	
Class	

Problem 1 – Properties of Parallelograms

We will begin this activity by looking at the definition of parallelogram and several properties of the parallelograms.

- 1. Define Parallelogram.
- 2. Parallelogram *QUAD* is shown on page 1.4. Drag point *Q* to two different positions and record the lengths of the segments in the table. Then, drag point *U* to two different positions and record the data in the same table.

Position	QU	ŪĀ	ĀD	DQ
1				
2				
3				
4				

3. What do you notice about the lengths of opposite sides of a parallelogram?

Angles of a polygon that share a side are consecutive angles. Angles that do not share a side are called opposite angles.

4. Parallelogram *QUAD* is shown again on page 1.8. Drag point *Q* to four different positions and record the measurement of the angles in the table.

Position	∠Q	∠U	∠A	∠D
1				
2				
3				
4				

- 5. What do you notice about consecutive angles of a parallelogram?
- 6. What do you notice about opposite angles of a parallelogram?

Problem 2 – Diagonals of Parallelograms

For this problem, we will look at the properties of the diagonals of parallelograms.

7. Parallelogram *QUAD* is shown on page 2.2. Record the lengths of each segment in row 1 of the table. Then, drag point *U* to three different positions. Record the data in rows 2, 3, and 4.

Position	QR	ĀR	DR	RU
1				
2				
3				
4				

8. What do you notice about the diagonals of the parallelogram?

Problem 3 – Proving Parallelograms

In this problem, we will explore various properties and see if they guarantee that a quadrilateral is a parallelogram.

On page 3.3 is a quadrilateral with a pair of opposite sides that is congruent (\overline{EX} and \overline{NT}). You are given the lengths of \overline{NE} , \overline{EX} , \overline{XT} , and \overline{NT} . You are also given the slopes of \overline{NE} , \overline{EX} , \overline{XT} , and \overline{NT} . Try to form a quadrilateral that is not a parallelogram with both pairs of opposite sides congruent by moving point *X*.

9. Does having both pairs of opposite sides congruent guarantee that the quadrilateral is a parallelogram? Draw an example or counterexample.

Properties of Parallelograms

On page 3.6, you are given one pair of opposite sides congruent (\overline{AT} and \overline{CS}) and one pair of opposite sides parallel (\overline{CA} and \overline{ST}). You are given the lengths of \overline{AT} and \overline{CS} . You are also given the slopes of \overline{CA} and \overline{ST} . Try to form a quadrilateral that is not a parallelogram by moving point *A*.

10. Does having one pair of opposite sides congruent and one pair of opposite sides parallel guarantee that the quadrilateral is a parallelogram? Draw an example or counterexample.

On page 3.9, you are given one pair of opposite sides parallel (\overline{YR} and \overline{OU}) Try to form a quadrilateral with opposite angles congruent that is not a parallelogram by moving point *O*. You are given the slopes of \overline{YR} , \overline{OU} , \overline{YO} , and \overline{RU} .

11. Does having one pair of opposite sides parallel and one pair of opposite angles congruent guarantee that the quadrilateral is a parallelogram? Draw an example or counterexample.

Problem 4 – Extending the Properties

For this problem,

- 1) Create any quadrilateral on page 4.2 and name it GEAR.
- 2) Find the midpoint of each side.
- 3) Connect the midpoints to form a quadrilateral.
- 12. What type of quadrilateral is formed after you connected the midpoints of GEAR?

13. How can you prove what type of figure is created by connecting the midpoints?