
By Dave Slomer
Eightysomething! Editor

Big Mountain Road leads from the city of Whitefish, MT, to
Big Mountain. The road, like most roads up steep mountains,
is made less steep by meandering through a series of
switchbacks – “hairpin curves” to we flatlanders. I had been
told big buses and semi-tractor-trailer rigs traversed this road
through all seasons and began to wonder how big of a
vehicle could make it around the sharpest of the
switchbacks. After looking at two electronic maps — both
using Global Positioning System satellite data — I saw that
one turn going up Big Mountain Road might just be as sharp
as 150�. This made me wonder if my truck could maneuver
my 32-foot fifth-wheel trailer up that sucker!

As is usual in applications, I made some assumptions: 
• The approaches on either side of each switchback 

were straight.
• The sides of the road segments were parallel.
• There was a distinct point that was the vertex 

of the angle so formed. 

I saw no reason to assume the widths of the individual
segments of roadway were equal on either side of the
switchback, since I was sure I was going to enlist the power
of the TI-92 Plus to help. Figure 1 shows a generalized road
in which the angle of the bend is � (that is, the turn is 180-�).
(A text file that issues the commands for going through this
article is stored at: http://homepages.uc.edu/~slomerdd/.)

Figure 1 — General
hairpin curve angle of ��
with roadway segment
widths xo and yo. The
trailer (heavy line
segment of length L in
figure 2) will barely fit
around this switchback.

Figure 2 — The sketch
from which all the math
below comes. Extending
the inside edges of each
road segment to the
other side of the other
segment forms at least
three similar triangles.

Similar triangles and the Law of Sines provide all the facts
necessary to set up the problem: 
In the “big” triangle: sin �0 = sin �

l         v+y0 .

In the “upper small” triangle: sin � = sin (180-�-�0)
v               x0             .

(I have included "subscripts" of zero on �, x and y to
emphasize that they are unspecified constants (parameters)
representing the dimensions of any given hairpin curve.)

A similar, more trivial, calculus problem involves a pipe being
moved around a corner where � = 90�. The intuitive leap, that
the longest pipe that will go around the corner is the shortest
one for which the pipe touches both outer walls and the
corner, is key to the solution both in that case and here. So
we need to minimize l, a function of two variables, � and v.
The algebraic preliminaries end just before figure 5, where
the calculus begins.

Figure 3 – Removing v
from the picture by
solving the second
equation for v and
substituting into the 
first equation.

Figure 4 – Solving for l , 
the length.

The following
commands, which were
actually issued (by the
text file referred to
earlier) immediately after

solving for l, define function len, whose value depends on
variable � and parameters xo, yo and �o. 

right(ans(1))
expr("Define len(xo,yo,�o,�)=" & string(ans(1)))
expr("Define y1(x)=" & string(ans(2)|�=x))

Those commands define len(xo,yo,�o,�) to be
(xo*sin(�)+yo*sin(�+�o))*sin(�o)/(sin(�)*sin(�+�o))

and y1(x) to be 
sin(�o)*(yo*sin(x+�o)+xo*sin(x))/(sin(x)*sin(x+�o))

It is necessary to give specific values to the parameters before
asking the TI-92 to solve for �. To look at a graph of y1 or a
table of its values, � must be changed to x. If we assume that
the road segments are only 20 feet wide and that a 140� turn
(�=40�, 40� short of a 180� turn) will need to be made, then
y1(x) is (see figure below). The angles in the denominator, as

well as those in the
similar triangles, suggest
that we limit x to the
interval (0,140), or (0,180-
�o), in general. 

We now look to calculus
for help in solving the

problem, a typical optimization problem. The derivative is
ugly, no matter how viewed:

-sin(40)*�*((sin(x))^2*cos(x+40)+(sin(x+40))^2*cos(x))/
(9*(sin(x))^2*(sin(x+40))^2)
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Figure 5 – The derivative
of the length function, 
just stored into y1 as a
function of x (�) only. The
command line has been
scrolled to the right to try
to reveal what is missing
from the numerator. 

Figure 6 – Setting the
derivative to zero and
solving numerically. The
derivative is zero at
�=70�, which leads to a
27.3-foot maximum
trailer length. (The tail
end of the nSolve line is
in the command line.) 

A look at the graph of y1 (see figure 7) suggests that 75 is the
only value of � between 0 and 180-�� that minimizes len for the
given values of the parameters. Presumably this will happen for
all choices of road segment widths and hairpin angles.

Figure 7 — A graph of
the len function near its
minimum.

Figures 5 through 7
show that having �=40�
gives �=70�, which
yields a point at which

the derivative of len is zero. If we just look at the on-screen
algebra, knowing that nSolve does not give all solutions to
an equation, we might wonder if another might exist, but the
graph virtually guarantees not. A 27.3-foot rod would barely
make the 140� turn at the corner of a road whose segment
widths are 25 feet each. If my 32-foot trailer is going to make
it up Big Mountain Road, the roads had better be much
wider or the turn much less severe!

Note that the given �o (40�) and the value found earlier for �
(70�) satisfy the equation 2�+�o=180. This appears to be true
for all roads with equal segment widths. I will use this fact now
(it can be easily proved; see the text file/article at
http://homepages.uc.edu/~slomerdd/.), which allows us to
solve the equation len=32 for road width, given road angle (�),
or to solve for road angle, given road width.

In figure 8, I try to see ballpark values that WILL permit my
trailer to round the hairpin. The first nSolve line shows that, if
the road segments are 30 feet wide (including shoulders??),
my trailer will pass, even if the hairpin angle is about 30�. In
the last line, if the hairpin angle is 50� (and �=65�), a 19-foot-
wide road will almost work for my 32-foot trailer. (The
command line shows the missing part of the first nSolve line.)

Figure 8 – Wishful
thinking?

But I’m worried that � is
less than 40� — that the
hairpin is even sharper
— and that the road
width is less than 20

feet! As suggested in figure 8, there are two variables
involved in the length problem if the road segments are
equal: road width (x) and hairpin angle (y, heretofore called
�). As shown earlier, if the road is 30 feet wide, I will have no
problem getting my trailer up the road, so call that xmax. Let
y go up to 90�, although, as shown, values beyond 50� are of
no worry — No need to use the time-consuming ZoomFit.
Clearly z1 will have a maximum at (xmax, ymax), since the
widest, least sharp road allows maximum lengths.

Under the conditions, z1 (trailer length) is rather simple 
(see figure 9). Storing 0 to ncontour turns off contour level
graphing, after which DrwCtour 32 asks for the one z-level of
interest — my 32-foot trailer. The cursor in the graph of z1 (fig.
10) tells me that a 27-foot-wide road with a 35� hairpin angle
will barely accommodate a 32-foot trailer. Clearly, as x (road
width) decreases, y (hairpin angle) had better increase, and
does. The dark curve, a contour, shows all points at which
z=32, but there is not a lot of directly useful information.

Figure 9 – Preparing for
3D graphing of function
len.

Figure 10 — The len
surface with a contour
for z=32.

Since z1(x,y)=4x(sin(y/2)),
the contour in the graph
is the set of points for
which 4x(sin(y/2))=32.

The situation might be better viewed with a 2D graph, possibly
of the inverse of that relation — x=8/sin(x/2). Figures 11
through 13 show 2D aspects of the problem, as does the
contour in figure 10.

Figure 11 — The problem
situation in two variables.
The command line stores
the last equation into the
Solver.

Figure 12 — The TI-92
Plus Solver, as set up in
figure 11. Here we see
that, if � = 35�, the road
width had better be well
over 26 feet.

In the Solver (fig.12), we can play with w and � interactively,
but a better numeric way than the Solver’s one-at-a-time
results may be afforded by a look at the usual eight-at-a-time
results that a table produces. So we store 8/sin(x/2) into y1

and look at a table of ordered pairs [in the form (road width,
hairpin angle); see fig. 13] that will accommodate a 32-foot
trailer. This is more useful than a graph and is the best view
of the problem so far. It shows that (for example), if the road
width is 21 feet, � had better not be much less than 44�; if �
drops to 38.5�, the road needs to be 24 feet wide. 
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But are the data in figure 14 the “ultimate” view of the
problem? Highlighted is evidence that my trailer will not
quite pass a 35� hairpin with segments only 26 feet in width.
Nearby we see that if �=40�, I’m alright with a 26-foot road,
and if the road is 28 feet, I’m okay with a 35� hairpin.

Figure 13—Table in
which x contains a road
width that determines 
y2 as the maximum
corresponding road 
angle (� ).

Figure 14— A “3D table”
of the problem situation.

The following text file produced the data variable in figure 14:

C:seq(w,w,14,30,2)»widthlst
C:"NewData hairpin,widthlst"»cmd
C:for �,20,45,5:cmd & “,z1(widthlst,1.*” & string(�) 
& ")"»cmd:endfor
C:expr(cmd)

The value stored into cmd via repeated concatentation (&) in
the text file was:

"NewData hairpin,widthlst,z1(widthlst,1.*20), 
z1(widthlst,1.*25),z1(widthlst,1.*30),z1(widthlst,1.*35),
z1(widthlst,1.*40),z1(widthlst,1.*45)"

(The ‘1.*’ portion of each reference to z1 causes approximate
values to be stored into “NewData” variable hairpin. The
headings were entered by hand.)

Extensions
• My trailer is not a rod, but an 8-foot by 32-foot rectangle
(projected onto the plane of the road), so: what to do? Its
diagonal is 33 feet. Do we just call its “effective length” 33
and use the results above? This sounds reasonable at first,
but what if a tree were right at the vertex at the inside of the
hairpin? And what if there were a wall or fence right at the
edges of the road? It would seem that some part of the
trailer would be in jeopardy for certain hairpins consistent
with this assumption.

• The assumption that the hairpin “curve” is formed by line
segments is severely limiting in the analysis of the problem
— My rig did easily make it up the mountain despite the dire
warnings in the article. In reality, the curve is a curve — but
which one: parabola? circle? something else (no doubt)? Can
the analysis be done better with a curve, rather than line
segments, as road boundaries? Probably, but how?

Proof?
Here is what I will call a “convincing calculator argument”
that the minimum value of the length for hairpins with equal
segment widths occurs when  � = 180 - �

2    .
(It is interesting to note that this occurs when � + 2� = 180
or when angle P equals �; that is, when triangle PQR is
isosceles. It is also true that those equations are equivalent
to � + � = 180 - � , which says that the exterior angle at P is
supplementary to R in PQR.)

Figure 15 — The
derivative of the len
function with equal road
segment widths at
a=(180-� )/2 is zero…

Figure 16 —… and the
second derivative is
clearly positive (for values
of � between 0 and 180)
at the angle in question,
PROVING that a=(180-
� )/2 is sufficient for a
minimum for len.

That hardly seems like work, let alone a proof. How much
information must be written, by whom and on what medium
for us to accept the proof? But what follows is definitely not
a proof, just friendly arguing and graphical cajoling, hoping
to make the reader “buy” the necessity of having the
absolute minimum at the angle in question.

There is no way to view the derivative of len on the TI-92
Plus screen. It is:

-xo*�*((sin(x))^2*cos(x+y)+cos(x)*(sin(x+y))^2)*sin(y)/
(180*(sin(x))^2*(sin(x+y))^2.

The command getNum(ans(1))/(-�*x*sin(y)) discards the
denominator (legal, since it has nothing to do with when the
numerator is 0) and discards the factors of the numerator that
are 0 only at 0. This leaves ((sin(x))^2*cos(x+y)+cos(x)*
(sin(x+y))^2), which we store to z1. We will hope to see the
significant (x,y) at which z1=0 by drawing a contour for z=0.

Figure 17— First, express
the derivative of len in
terms of x and y instead
of a and �.

Figure 18—Setting up z1.
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The text file below will set a good window in which to graph
z1, as shown in figure 19.

C:setMode("Graph","3D")
C:setGraph("Coordinates","RECT")
C:setGraph("Labels","ON")
C:ZoomFit
C:0»ncontour
C:DrwCtour 0
C:setGraph("Style","WIRE AND CONTOUR")
C:40»eye�:20»eye�:0»eye�
C:0»xmin:90»xmax:15»xgrid
C:0»ymin:90»ymax:15»ygrid
C:setGraph("Axes","BOX")
C:Trace

Figure 19 — A picture
that is somewhat
convincing that the only
place zc=0 occurs is
when 2xc+yc=180.

During tracing, note that any time you reach zc=0, it will be
true that 2xc+yc=180 — in other words (symbols), 2�+�=180.
In the graph above, zc=0 when xc=72 and yc=36, since
2·72+36=180. To reach other points where zc=0, use the
cursor keys, and aim for the thick line — the contour for z=0,
drawn via the DrwCtour 0 command in the text file.  Note
that the thick line appears to be a line — the line 2x+y=180
in the plane (contour) where z=0.

Also note that once at a point where zc=0, getting to any
other point where zc=0 in the window is done by
incrementing xc and decrementing yc twice (or
decrementing xc and incrementing yc twice)—again
showing that 2xc+yc=180 whenever zc=0, in addition to
showing that the slope of that line is -2. 

Noting that nowhere else in the window (in which x and y
range from 0 to 90�) does it seem likely that z=0, it would
seem clear that, not only “IF”, but also “ONLY if” 2�+�=180
will the derivative of len be zero.

Meet the Editor 
TI is proud to announce Julie B. Ealy as the new science

editor of Eightysomething!. Dr. Ealy received her BA

from the State University of New York at Buffalo, MS

from Northern Illinois University and MPhil and Ph.D. in

chemical education from Columbia University.

For 24 years, Dr. Ealy taught all science courses from

earth science to physics at the secondary level, including

honors and Advanced Placement chemistry in public and

private schools. She then pursued a Ph.D. under the

guidance of Leonard Fine. She evaluated the integration

of molecular modeling into first-year college chemistry

and found that molecular modeling both qualitatively 

and quantitatively makes a difference in students’ 

learning at the atomic and molecular level. She developed

self-contained demonstration kits for Flinn Scientific 

Company and has co-authored two books on chemical

demonstrations published by the American Chemical

Society; the most recent is Visualizing Chemistry.

Dr. Ealy is a consultant for the College Board in AP

Chemistry and for Harcourt College Publishers. She has

performed research in organometallic synthesis with

Claude Yoder and educational research with the late

Miles Pickering. She has presented numerous workshops

on chemical demonstrations to elementary school

teachers through college professors at local, national and

international conferences. She recently began adaptation

of chemical demonstrations for the CBL and graphing

calculator system. She is a ChemBio instructor for TI and

has presented numerous Discovery workshops. For the

last two years, Dr. Ealy has been teaching part-time at

Rye Country Day School and Columbia University. Her

present research interests pertain to the integration of

writing into first-year college chemistry, evaluation of a

college chemistry textbook and development of

assessment measures for molecular modeling.

F a l l  2 0 0 0   Eightysomething!       9

Eighty Something.qxd  11/14/00  5:08 PM  Page 9


