Metallic Numbers

Student Activity

7 8 9 10 11 12

Introduction

The famous Fibonacci sequence 1, 1, 2, 3, 5, 8 ... involves the recursive sequence definition: $t_{n+2} = t_n + t_{n+1}$. The ratio between consecutive terms for the Fibonacci sequence as $n \to \infty$ is known as the Golden Ratio:

Golden Ratio:
$$\lim_{n\to\infty} \frac{t_{n+1}}{t_n} = \phi$$

In this investigation you will explore a small variation on the Fibonacci sequence: $t_{n+2} = t_n + at_{n+1}$ where a is a natural number. In this investigation these variants on the Fibonacci sequence will be referred to as "Levels", for example Fibonacci Level 2 means that a=2 in the recursive definition above. The original Fibonacci sequence is therefore Fibonacci Level 1 with a=1.

Fibonacci Level 2: In search of the Silver Ratio

This sequence starts as: 1, 1, 3, 7, 17, 41, 99 ...

Each successive term is equal to "the previous two terms plus another helping of the previous term." This can be expressed more succinctly using mathematical notation as:

$$t_{n+2} = t_n + 2t_{n+1}$$

The first two numbers can still be set as 1 and 1.

Make sure your calculator is set in 'sequence' mode: $\boxed{\text{MODE}}$ > Seq Use the y = editor to select the sequence type: SEQ(n+2)) shown. Use $\boxed{\text{ALPHA}}$ and 'u' (located above the 7 key) to reference terms.

To check the sequence, generate a table of values: 2nd GRAPH

NORMAL FLOAT AUTO REAL DEGREE MP PRESS + FOR △T61						
מ	u					Г
2	1					Г
3	3					l
4	7					ı
5 6 7	17					l
6	41					ı
7	99					ı
8	239					l
9	577					l
10	1393					ı
11	3363					l
12	8119					L
n=2	·					

Calculate the ratio between consecutive terms.

Use the 'u' (located above the 7 key) to reference each term.

Question: 1.

Explore the ratio between consecutive Fibonacci Level 2 terms, this is called the 'Silver' ratio.

Calculator Tip!

It is possible to generate an entire list of ratios directly on the calculator home screen. Start by storing the numbers from 1 to 15 in L_1 . The Sequence command located in the List > Op menu will help.

$$seq(x,x,1,15) \rightarrow L_1$$

With the Fibonacci Level 2 sequence defined in *u*, generate an entire list of ratios:

$$\frac{\mathsf{u}(\mathsf{L}_1+1)}{\mathsf{u}(\mathsf{L}_1)}$$

Question: 2.

Change the first two terms in the Fibonacci Level 2 sequence and check to see if this changes the long term value of the ratio between consecutive terms.

Question: 3.

Let x represent any term in the sequence and y the next term.

a) Explain the two formulas below:

$$r_n = \frac{y}{x}$$
 and $r_{n+1} = \frac{2y + x}{y}$

b) Assuming the ratio between consecutive terms is approximately equal as $n \to \infty$ determine the value of the ratio.

Fibonacci Level 3: In search of the Bronze Ratio

The bronze ratio refers to the ratio between consecutive terms of the level 3 Fibonacci sequence. The general formula for the sequence $t_{n+2} = t_n + at_{n+1}$ therefore becomes: $t_{n+2} = t_n + 3t_{n+1}$

Question: 4.

Generate the first 50 terms of the level 3 sequence and store them in L₃, explore the ratio between consecutive terms as n increases.

Question: 5.

Set up two formulas similar to those from Question 3 and hence determine the exact value for the bronze ratio.

Fibonacci Level n: The Metallic Ratios

The general term for the ratio between consecutive terms for $t_{n+2} = t_n + at_{n+1}$ is referred to as a Metallic ratio.

Question: 6.

Determine an expression for the general form of the Metallic ratios. Check your answer using a = 1, a = 2and a = 3.

Question: 7.

For the golden ratio (ϕ) the following relationships hold:

$$\phi = \frac{1}{\phi} + 1$$

$$\phi^2 = \phi + 1$$

$$\phi^2 = \phi + 1 \qquad \qquad \phi^1 + \phi^2 = \phi^3$$

Do any of the above relationships hold for the silver or bronze ratio?

Question: 8.

Calculate the approximate value for each of the following and comment on your finding as the quantity of 'embedded' fractions increases.

a)
$$1 + \frac{1}{1+1}$$

b)
$$1 + \frac{1}{1 + \frac{1}{1 + 1}}$$

c)
$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + 1}}}$$

d)
$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}}$$
 (In this case add as many fractions as possible)

Question: 9.

Calculate the approximate value for the following 'embedded' fraction and comment on the result.

$$2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}}$$

