Teacher Notes

Objectives

- Examine functions defined by a definite integral
- Understand the foundation of the Fundamental Theorem of Calculus

Materials

• TI-84 Plus / TI-83 Plus

Teaching Time

50 minutes

Accumulation Functions

Abstract

In this activity, students create tables and graphs for functions of the form

$$f_a(x) = \int_a^x 1.5 dt$$

The graphing handheld is used to produce a scatter plot. This activity is meant to precede and foreshadow the Fundamental Theorem of Calculus activity. Question 13 has students directly anticipate the Fundamental Theorem of Calculus.

Management Tips and Hints

Prerequisites

Students should know the notation for definite integrals and understand these basic properties:

$$\int_{a}^{a} f(t)dt = 0$$

If f(t) > 0 for $a \le t \le x$, then

$$\int_{a}^{x} f(t) dt > 0$$

If f(t) > 0 for $x \le t \le a$, then

$$\int_{a}^{x} f(t)dt < 0$$

Evidence of Learning

Students will

- be able to evaluate functions of the form $g(x) = \int_a^x k dt$, where k is a constant.
- recognize that the graphs of functions of the form $g(x) = \int_a^x k dt$, are parallel lines.

Common Student Errors/Misconceptions

This is likely the first experience students will have with a function defined with the independent variable as a limit of integration. A discussion of the integral of a constant velocity function from 0 to t could help students relate this to a familiar concept. For example, if

$$s(t) = \int_0^t 50 du$$

then s(2) = 100 is the distance traveled by a car traveling at a constant velocity of 50 mph between times t = 0 and t = 2. Discuss the meaning of s(t) for any time t.

Activity Solutions

- **1.** 0
- **2.** 1.5
- **3.** -1.5

4.

_		
ŀ.	х	$f_0(x) = \int_0^x 1.5 dt$
	0	0.0
	1	1.5
	2	3.0
	3	4.5
	-1	-1.5
	-2	-3.0
	-3	-4.5

5.

- **6.** 0
- **7.** 1.5
- **8.** -1.5

Ω	
7	

х	$f_1(x) = \int_1^x 1.5 dt$
0	-1.5
1	0.0
2	1.5
3	3.0
-1	-3.0
-2	-4.5
-3	-6.0

10.		_	Ī.		
			Ī		
			ŀ		
			ļ		
	П		L		

11

_		
1.	х	$f_{-1}(x) = \int_{-1}^{x} 1.5 dt$
	0	1.5
	1	3.0
	2	4.5
	3	6.0
	-1	0.0
	-2	-1.5
	-3	-3.0

12.

13. Each is contained in a line that has a slope of 1.5.