Math Explorations with Python

**TI-84 PLUS CE PYTHON TECHNOLOGY** 

### Fraction Tic Tac Toe

In this project, you will create a fraction tic tac toe game. The tic tac toe board and scoring code have already been written for you in the "TicTacTo.8xv" file. You will write the code to generate fraction addition, subtraction,

multiplication and division problems. You will also write the code to request the user's answer. The user must answer the question correctly to earn a new spot on the board.

The computer always earns a new spot, so math carefully!

### **Objectives:**

#### Programming Objectives:

- Use variables to store values
- Use the randint() function to generate integers
- Use the print() function to display
- Use a while loop to repeat code.

### Math Objectives:

- Add and subtract fractions with unlike denominators.
- Multiply and divide fractions.
- Add, subtract, multiple, and divide fractions with positive and negative values.

### Math Course Connections: Middle School Mathematics

In this project, you will create a fraction tic tac toe game. The tic tac toe board and scoring code have already been written for you in the "TicTacTo.8xv" file. You will write the code to generate fraction addition, subtraction, multiplication and division problems. You will also write the code to request the user's answer. The user must answer the question correctly to earn a new spot on the board. The computer always earns a new spot, so math carefully!

| PYTHON SHELL                   | ំ   |
|--------------------------------|-----|
| >>> # Shell Reinitialized      |     |
| >>> # Running TTT_DONE         |     |
|                                |     |
|                                |     |
|                                |     |
| 789<br>5/10 - 1/2              |     |
| Numerator:                     |     |
| Fns…   a A #   Tools Editor Fi | les |

User given fraction problem

| PYTHON SHELL                    |
|---------------------------------|
| Denominator: 5                  |
| Sorry, incorrect                |
| computer picks 6                |
| 0 123                           |
|                                 |
| x   o 4 5 6                     |
|                                 |
| 789                             |
|                                 |
| 5/9 - 6/6                       |
| Numerator:                      |
| Fns.   a A # Tools Editor Files |

User enters incorrect answer. Lose a turn. Computer gets to place "o".

 PYTHON SHELL

 >>> from TTT\_DONE import \*

 |
 1 2 3

 ----- 4 5 6

 ----- 7 8 9

 5/10
 - 4/3

 Numerator:
 -25

 Denominator:
 30

 Correct
 place × at space:

 Fns...
 a A # Tools Editor Files

If answered correctly, earns an "x"

| PYTHON SHEL                                        | "L 📲                 |
|----------------------------------------------------|----------------------|
| •                                                  | 123                  |
| ×   o                                              | 456                  |
|                                                    | 789                  |
| 5/9 - 6/6<br>Numerator:<br>Denominator:<br>Correct | -24<br>: 54          |
| place x at s                                       | space:               |
| Fns… la fit                                        | # Tools Editor Files |

User answers correctly, gets to choose a location on the board.

 PYTHON SHELL
 I
 7 8 9

 computer picks 2
 0
 1 2 3

 ------ 1 2 3
 ------ 

 I × I
 4 5 6
 ------ 

 I / 7 8 9
 5/5 + -3/5
 -3/5

 Numerator:
 I
 Fns... | a fi # Tools Editor Files

Computer plays "o". Next question.

| ۰ | Ι | × | I | ۰ | 4 | 5 | 6 |  |
|---|---|---|---|---|---|---|---|--|
| × | I |   | I |   | 7 | 8 | 9 |  |
|   | I | ٥ | I | × | 1 | 2 | 3 |  |
| • | I | × | I | • | 4 | 5 | 6 |  |
| × | I |   | ļ |   | 7 | 8 | 9 |  |

......Game continues until someone ......wins or spaces are filled.

1. Obtain the "TicTacTo.8xv" from your teacher. Part of the programming code has been coded for you.



2. Let's examine the code template.



(Continues on the next page)



Math Explorations with Python

**TI-84 PLUS CE PYTHON TECHNOLOGY** 

### FRACTION TIC TAC TOE STUDENT DOCUMENT



 3. The first step to create your fraction tic tac toe game is to create a fraction. To create positive numerator values from 1 to 10, you would write the code n = randint(1,10). To create the numbers 3 to 7 it would be n = randint(3, 7). You will create integer values from -10 to 10.
 Write the fellowing line of code to generate a number from 10 to 10 and steps

Write the following line of code to generate a number from -10 to 10 and store it in a variable **n**. Write this line under the *def fraction()* function.

n = randint(-10,10)

\*randint is in the menu Fns → Modul → random → randint() \*Make sure n is on the left side of the equation. When programming, the variable goes on the left, the math goes on the right.



# Math Explorations with Python TI-84 PLUS CE PYTHON TECHNOLOGY

For this game, we do not want to allow the numerator to be a zero.
 You'll write a loop that generates a new value for n while it equals zero.

Add the lines: while n==0:

n=randint(-10,10)

\*\*while is in the menu Fns  $\rightarrow$  Ctl  $\rightarrow$  while \*\*You can type n = randint(-10,10) or you can copy and paste the line you already coded. To copy, Tools  $\rightarrow$  6 Copy Line. To past, Tools  $\rightarrow$  Paste Line Below

 The denominator should be an integer between 2 and 10. Because we are not making zero an option, we won't need a loop to make sure it doesn't happen. Add a line of code that creates a variable d with values between 2 and 10.

### FRACTION TIC TAC TOE STUDENT DOCUMENT







6. Did you add the line:

d = randint(2,10)

7. The last step to creating a fraction is to put the numerator and denominator together. Because this is code is written inside a *definition* named fraction, we will *return* the fraction so it can be used in other parts of the code.

You will write **return str(n) + "/" + str(d)**. The numerator and denominator are both integers while the sign "/" is a string. To put these two data types together, you must write str(n) and str(d) to treat the numbers as characters.

Add the line:

return str(n) + "/" + str(d)

\*\*return Fns → return
\*\*str() Fns → type → string
\*\* " " [alpha] [+]

4

# Math Explorations with Python TI-84 PLUS CE PYTHON TECHNOLOGY

8. Now to create a question.

Go to the second function *def problem()*. Create two fractions, f1 and f2.

Add the lines:

f1 = fraction()
f2 = fraction()

\*\*You can type both lines, or you can copy and paste to get the second line.
 Tools→6 Copy Line Tools→7 Paste Line Below

 Now to determine the type of question. The function *choice()* will select a random item from items within the parenthesis. To randomly select an operation and store the sign choice, type:

s = choice(["+","-","\*","/"])

\*choice Fns  $\rightarrow$  Modul  $\rightarrow$  random  $\rightarrow$  choice \*[] [2<sup>nd</sup>][\*] and [2<sup>nd</sup>][-]

10. You have the two fractions, *f*1 and *f*2, and an operation *s*. Now to print them to the screen.

print(f1 + " " + s + " " + f2 + " =")

\*\*print Fns  $\rightarrow$  I/O  $\rightarrow$  print

After printing the fraction question, the user needs to enter an answer.
 Ask the user to input the numerator. The result in a variable named **un**, short for user's numerator.

un=int(input("numerator"))

\*\*int Fns  $\rightarrow$  Type  $\rightarrow$  int \*\*input Fns  $\rightarrow$  I/O  $\rightarrow$  input

\*\*If you don't put int() around the input() Python will treat your answer like characters instead of integers!

### FRACTION TIC TAC TOE STUDENT DOCUMENT









# Math Explorations with Python TI-84 Plus CE Python Technology

- 12. Add another line to ask for the denominator. Store the result in a variable named **ud**, short for user's denominator. *(This should look similar to the line from step 11.)*
- 13. The last step is to calculate the real answer to the question. The code has already been written to check the real answer against the user's input. We just need to calculate the correct answer. Add:

## answer=eval( "(" +f1 + ")" + s + "(" + f2 + ")" )

\*\*eval Fns  $\rightarrow$  I/O  $\rightarrow$  eval

If typed correctly,

All the plus signs should appear in red when you are done. All the "(" and ")" should appear in green.

14. You're done! Unless you have errors, when you Run ([Trace])

Play the game several times. Can you beat the computer each time?

| EDITOR: TICTACTO                            |
|---------------------------------------------|
| <pre>def problem():</pre>                   |
| <pre>**f1=fraction()</pre>                  |
| ••f2=fraction()                             |
| <pre>**s=choice(["+"."-"."*"."/"])</pre>    |
| <pre>**print(f1+" "+s+" "+f2+" =")</pre>    |
| <pre>**un=int(input("numerator: "))</pre>   |
| <pre>**ud=int(input("denominator: "))</pre> |
|                                             |
| **answer=eval("("+f1+")"+s+"("+f            |
| 2+")")                                      |
| **                                          |
|                                             |