Name \qquad

Investigating the Relationship between the Sides of Right Triangles and Oblique Triangles with TI-Nspire Handheld

1. What does the Pythagorean Theorem tell us about the relationship of sides a, b, and c of right $\triangle \mathrm{ABC}$? State the formula as you know it.
2. What is the value of $a^{2}+b^{2}-c^{2}$ for a right triangle? \qquad

3. Open file "Triangle Investigation" on TI-Nspire and do problem \#1.
4. If a and b stay constant and $\angle \mathrm{C}$ becomes an acute angle, predict whether $a^{2}+b^{2}-c^{2}$ is positive, negative, or zero.

Explain why.

5. If a and b stay constant and $\angle \mathrm{C}$ becomes an obtuse angle, predict whether $a^{2}+b^{2}-c^{2}$ is positive, negative, or zero.

Explain why.

6. Based on your answers above, if $\angle \mathrm{C}$ varies from 0° to 180°, describe the behavior of $a^{2}+b^{2}-c^{2}$.
7. Do problem \#2 from file "Triangle Investigation" on TI-Nspire to check your thinking.
8. On page 2.2 of file "Triangle Investigation", side a and side b are constant: $a=3 \mathrm{~cm}$ and $b=4 \mathrm{~cm}$. Side c and $\angle \mathrm{C}$ vary. Collect some data from your drawing, and enter it in the chart on the right.60°
9. If you graph $\angle \mathrm{C}$ on the x -axis and $a^{2}+b^{2}-c^{2}$ on the y -axis, describe what you know about the shape of the graph from your observations.

$\angle \mathrm{C}$	$a^{2}+b^{2}-c^{2}$
0°	
30°	
60°	
90°	
120°	
150°	
180°	

10. Let's look at the relationship in the table from \#8 a little further. We'll collect more data in a spreadsheet and graph that data. Go to problem \#3 in the file "Triangle Investigation", and follow the directions carefully. You will be graphing $\mathrm{m} \angle \mathrm{C}$ on the x -axis and the algebraic expression $a^{2}+b^{2}-c^{2}$ on the y-axis.
11. Does the shape of the graph look like you thought it would? \qquad
12. What type of functions would fit this data? \qquad
13. Return to page 3.5 in the file "Triangle Investigation". To enter your function guess, you will need to show the function entry line. To do this press menn, then 2:View, and 6:Show Entry Line. Press 荿, Enter your guess in the line $\mathrm{f} 1(\mathrm{x})=$.

Guess f1(x)= \qquad
14. What features of your function are correct?
\qquad
15. What features of your function need adjustment?
16. Edit the function to better fit the data. (If the entry line now says $f 2(x)=$, up arrow to return to $\mathrm{f} 1(\mathrm{x})=$.)

What is your final function?
$\mathrm{f} 1(\mathrm{x})=$ \qquad
17. Side a and side b of the triangle were constants in this investigation: side $\mathrm{a}=3$ and side $\mathrm{b}=4$. How does the constant in your function relate to these constant sides?
18. Generalize your hypothesis, and complete this equation for all triangles.
19. Solve the equation for c^{2}.

$$
a^{2}+b^{2}-c^{2}=
$$

\qquad

$$
c^{2}=
$$

\qquad
Extension:
In the extension, side b and $\mathrm{m} \angle \mathrm{C}$ are constant, and side a and side c will vary. Go to problem \#4 in the file "Triangle Investigation" and follow directions carefully.

What is the shape of the graph?
Write an equation to fit the data \& enter it in $\mathrm{f} 1(\mathrm{x})=$ (Refer to \#13 to show function entry line.)

Explain the shape of the graph in relation to the triangle. \qquad

