\qquad
\qquad

In this lesson, you will be given the opportunity to summarize, review, explore and extend ideas about Rotations.

It is important that the Rotations Tour be done before any Rotations lessons.

Use a compass and straightedge when needed.

1. Label the vertices of the images appropriately.
a. Rotate $\Delta D E F 90^{\circ}$ about point R. $\left(\Delta D^{\prime} E^{\prime} F^{\prime}\right)$
b. Rotate $\triangle D E F 180^{\circ}$ about point R. $\left(\Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}\right)$
c. Rotate $\triangle D E F 270^{\circ}$ about point R. $\left(\Delta D^{\prime \prime \prime} E^{\prime \prime \prime} F^{\prime \prime \prime}\right)$
d. Rotate $\triangle D E F 360^{\circ}$ about point R. $\left(\Delta D^{(4)} E^{(4)} F^{(4)}\right)$
e. If $m \angle D=35^{\circ}$, then $m \angle D^{\prime}=$ \qquad .

f. If $E F=4.5$ in, then $E " F "=$ \qquad .
g. If the slope of $\overline{E D}=-2$, then the slope of $\overline{E^{\prime} D^{\prime}}=$ \qquad .
h. If the slope of $\overline{E F}=\frac{2}{3}$, then the slope of $\overline{E^{\prime \prime} F^{\prime \prime}}=$ \qquad .
i. If the perimeter of $\triangle D E F$ is 8 in , then the perimeter of $\triangle D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ is \qquad .
j. If the coordinates of point D are $(3,2)$, what are the coordinates of:
D': \qquad D": \qquad D"': \qquad $D^{(4)}$; \qquad
\qquad
\qquad

Use a compass and straightedge as needed.

2. Rotate $\Delta G H I \quad 60^{\circ}$ about point N .
 N
3. a. Rotate $\triangle N P Q 60^{\circ}$ about point N . Label the image $\Delta N^{\prime} P^{\prime} Q^{\prime}$.
b. Rotate $\triangle N P Q 210^{\circ}$ about point N . Label the image $\Delta N " P " Q "$.
c. Rotate $\triangle N P Q-45^{\circ}$ about point N. Label the image ΔN "' P "' Q "'.
4. Rotate $\triangle J K L 135^{\circ}$ about point M .

\qquad
\qquad

5．Label the vertices of the images appropriately．
a．Rotate $\triangle X Y Z 90^{\circ}$ about the origin．

$$
\begin{array}{ll}
m(\overline{X Y})= & m\left(\overline{X^{\prime} Y^{\prime}}\right)= \\
m(\overline{Y Z})= & m\left(\overline{Y^{\prime} Z^{\prime}}\right)= \\
m(\overline{X Z})= & m\left(\overline{X^{\prime} Z^{\prime}}\right)=
\end{array}
$$

Fill in the blanks with either \square（＇is parallel to＇）or \perp（＇is perpendicular to＇）：
$\stackrel{X Y}{ }$ \qquad $\stackrel{X^{\prime} Y^{\prime}}{ }$
$\stackrel{\rightharpoonup}{Y Z}$ \qquad $\widehat{Y^{\prime} Z^{\prime}}$
$\stackrel{X Z}{Z}$ \qquad $\overleftarrow{X^{\prime} Z^{\prime}}$

Label the vertices of the images appropriately．
b．Rotate $\triangle X Y Z 180^{\circ}$ about the origin．

$$
m(\overline{X Y)}=
$$

$$
m\left(\overline{X^{\prime \prime} Y^{\prime \prime}}\right)=
$$

\qquad

$$
m(\overline{Y Z})=
$$ $m\left(\overline{Y^{\prime \prime} Z^{\prime \prime}}\right)=$ \qquad

$m(\overline{X Z})=$ \qquad

$$
m\left(\overline{X^{\prime \prime} Z^{\prime \prime}}\right)=
$$

\qquad

Fill in the blanks with either \square（＇is parallel to＇）or \perp（＇is perpendicular to＇）：
$\overleftrightarrow{X Y}$ \qquad $\overparen{X^{\prime \prime} Y^{\prime \prime}}$

$$
\stackrel{Y Z}{Z}
$$

\qquad $\overparen{Y^{\prime \prime} Z^{n}}$
$\overleftarrow{X Z}$ \qquad $\overleftarrow{X^{\prime \prime} Z^{\prime}}$
\qquad Student Activity \qquad

Label the vertices of the images appropriately.
c. Rotate $\triangle X Y Z 270^{\circ}$ about the origin.

$$
\begin{array}{ll}
m(\overline{X Y})= & m\left(\overline{X^{\prime \prime \prime} Y^{\prime \prime \prime}}\right)= \\
m(\overline{Y Z})= & m\left(\overline{Y^{\prime \prime \prime} Z^{\prime \prime \prime}}\right)= \\
m(\overline{X Z})= & m\left(\overline{X^{\prime \prime \prime} Z^{\prime \prime \prime}}\right)=
\end{array}
$$

Fill in the blanks with either \square ('is parallel to') or \perp (' is perpendicular to'):
$\overrightarrow{X Y}$
$\overleftarrow{X^{\prime \prime \prime} Y^{\prime \prime \prime}} \quad \overleftarrow{Y Z} \quad \overleftarrow{Y^{\prime \prime \prime} Z^{\prime \prime \prime}}$
6. a. The corresponding sides of rotated triangles are \qquad .
b. The corresponding angles of rotated triangles are \qquad .
c. If a triangle is rotated about a point through a given angle measure, then the pre-image triangle and the image triangle are \qquad to each other.
7. If a triangle is rotated about a point through x^{0}, the corresponding angles and the corresponding sides of the pre-image and image triangles are congruent and the triangles are
\qquad .

Therefore, a rotation is a \qquad or an \qquad .

We also say that a rotation is a \qquad and an \qquad transformation.

