Student Activity Name Class In this lesson, you will be given the opportunity to summarize, review, explore and extend ideas about Rotations. It is important that the Rotations Tour be done before any Rotations lessons. #### Use a compass and straightedge when needed. - 1. Label the vertices of the images appropriately. - a. Rotate $\triangle DEF$ 90° about point R. ($\triangle D'E'F'$) - b. Rotate $\triangle DEF$ 180° about point R. ($\triangle D"E"F"$) - c. Rotate $\triangle DEF$ 270° about point R. ($\triangle D'''E'''F'''$) - d. Rotate ΔDEF 360° about point R. ($\Delta D^{(4)}E^{(4)}F^{(4)}$) - e. If $m\angle D = 35^{\circ}$, then $m\angle D' =$ _____. - If EF = 4.5 in, then E"F" = _____. - If the slope of $\overline{EF} = \frac{2}{3}$, then the slope of $\overline{E"F"} = \underline{\qquad}$. - If the perimeter of ΔDEF is 8 in, then the perimeter of $\Delta D"E"F"$ is ______. - If the coordinates of point D are (3, 2), what are the coordinates of: D': _____ D'': ____ D''': ____ D''': ____ Name _____ Student Activity Class _____ #### Use a compass and straightedge as needed. - 2. Rotate ΔGHI 60° about point N. - 3. Rotate ΔJKL 135° about point M. - 4. a. Rotate ΔNPQ 60° about point N. Label the image ΔN 'P'Q'. - b. Rotate ΔNPQ 210° about point N. Label the image ΔN "P"Q". - c. Rotate ΔNPQ 45° about point N. Label the image ΔN " P " Q ". ### Student Activity Class _____ 5. Label the vertices of the images appropriately. a. Rotate ΔXYZ 90° about the origin. $$m(\overline{XY}) = \underline{\qquad} m(\overline{X'Y'}) = \underline{\qquad}$$ $$m(\overline{YZ}) = \underline{\qquad} m(\overline{Y'Z'}) = \underline{\qquad}$$ $$m(\overline{XZ}) = \underline{\qquad} m(\overline{X'Z'}) = \underline{\qquad}$$ Fill in the blanks with either \square ('is parallel to') or \bot (' is perpendicular to'): $$\overrightarrow{XY}$$ $\overrightarrow{X'Y}$ $$\overrightarrow{YZ}$$ $\overrightarrow{Y'Z'}$ $$\overrightarrow{XY}$$ ____ $\overrightarrow{X'Y'}$ \overrightarrow{YZ} ____ $\overrightarrow{Y'Z'}$ \overrightarrow{XZ} ____ $\overrightarrow{X'Z'}$ Label the vertices of the images appropriately. b. Rotate ΔXYZ 180° about the origin. $$m(\overline{XY}) = \underline{\qquad} m(\overline{X"Y"}) = \underline{\qquad}$$ $$m(\overline{YZ}) = \underline{\qquad} m(\overline{Y"Z"}) = \underline{\qquad}$$ $$m(\overline{XZ}) = \underline{\qquad} m(\overline{X"Z"}) = \underline{\qquad}$$ Fill in the blanks with either \square ('is parallel to') or \bot (' is perpendicular to'): $$\overrightarrow{XY}$$ \overrightarrow{X} \overrightarrow{Y} $$\overrightarrow{YZ}$$ \overrightarrow{Y} " \overrightarrow{Z} " $$\overrightarrow{XY}$$ ____ \overrightarrow{X} \overrightarrow{Y} \overrightarrow{Y} \overrightarrow{YZ} ____ \overrightarrow{Y} \overrightarrow{YZ} ... \overrightarrow{XZ} ___ \overrightarrow{X} \overrightarrow{XZ} ... ## Student Activity Class ____ Label the vertices of the images appropriately. c. Rotate ΔXYZ 270° about the origin. $$m(\overline{XY}) = \underline{\qquad} m(\overline{X"Y"}) = \underline{\qquad}$$ $$m(\overline{YZ}) = \underline{\qquad} m(\overline{Y'''Z'''}) = \underline{\qquad}$$ $$m(\overline{XZ}) = \underline{\qquad} m(\overline{X'''Z'''}) = \underline{\qquad}$$ Fill in the blanks with either \square ('is parallel to') or \bot (' is perpendicular to'): $$\overrightarrow{XY}$$ \overrightarrow{X} \overrightarrow{Y} \overrightarrow{Y} $$\overrightarrow{XY}$$ ____ \overrightarrow{X} \overrightarrow{YZ} ____ \overrightarrow{Y} \overrightarrow{YZ} ____ \overrightarrow{X} \overrightarrow{XZ} ____ \overrightarrow{X} \overrightarrow{XZ} ____ \overrightarrow{X} - 6. a. The corresponding sides of rotated triangles are ______. - The corresponding angles of rotated triangles are _____ b. - If a triangle is rotated about a point through a given angle measure, then the pre-image c. triangle and the image triangle are ______ to each other. - 7. If a triangle is rotated about a point through x^o, the corresponding angles and the corresponding sides of the pre-image and image triangles are congruent and the triangles are Therefore, a rotation is a ______, or an _____. We also say that a rotation is a _____ and an ______ transformation.