Discovering Pi
Teacher Worksheet

Name	 	 	
Class			

In this activity, you will explore:

- The relationship between the circumference and diameter of a circle
- The relationship between the area and radius of a circle

Open the file *DiscoveringPi.tns* on your handheld and follow along with your teacher to work through the activity. Use this document as a reference.

Exploring the Relationship between the Circumference and Diameter of a Circle

- Read the information on page 1.2. On page 1.3, you can change the size of the circle by clicking on the circle and dragging.
- Use the measurement tool to find the circumference and diameter of the circle:
 - Press MENU, Measurement...Length.
 - Click when the circle is selected. Move this measurement to the top right corner.
 - Click when the segment (diameter) is selected. Move this measurement to the middle right of your screen.
- Store these values as variables (Cir and Diam)
 - To store a variable, CLICK once on the value to be stored, press CTRL + VAR, enter the name for the variable, and press ENTER.
- Advance to the spreadsheet on page 1.7 and set it up to capture data from page 1.5 manually (MENU > Data > Data Capture > Manual Data Capture). Data is captured into the spreadsheet each time you press CTRL + .. Capture at least 5 sets of values.
- Look at the data and see if you can find a relationship between the circumference and diameter of the circle.
- In column C, divide column a by column b. (Type =a/b in the cell with the diamond)
- What do you notice about the results?

Exploring the Relationship between the Area and Radius of a Circle

- Read the information on page 2.1.
- Use the measurement tool to find the area and radius of the circle:
 - Press MENU, Measurement...Length.
 - Click the center of the circle and the point on the circle. Move this measurement to the middle right of your screen.
 - Press MENU, Measurement...Area
 - Click when the Circle is selected. Move this measurement to the top right of your screen.
- Store these values as variables (Area and Rad)
 - To store a variable, CLICK once on the value to be stored, press CTRL + VAR, enter the name for the variable, and press ENTER.
- Advance to the spreadsheet on page 1.7 and set it up to capture data from page 2.2 manually (MENU > Data > Data Capture > Manual Data Capture). Data is captured into the spreadsheet each time you press CTRL + .. Capture at least 5 sets of values.
- Look at the data and see if you can find a relationship between the area and radius
 of the circle.
- In column C, square the radius.
- In column D, divide the area by the radius squared.
- What do you notice about the results?

Completed Student File:

On the next screen, you will see a spreadsheet. You will be capturing the data from page 1.5 as you increase and decrease the size of the circle.

Next, we will explore this relationship by dividing column a by column b. Go back to 1.7 and type a formula in column c that will divide the values in column a by the values in column b.

1.6 1.7 1.8 1.9 ▶RAD AUTO REAL

1.8 1.9 1.10 2.1 ▶RAD AUTO REAL We will now do a short exploration using the area of a circle. Do you think the area and radius of a circle are related? How?

1.10 2.1 2.2 2.3 ▶RAD AUTO REAL					Î
Α	В	С	D	E	F
• = captui	=captu	=b[]^2	=a[]/c[]		
1 40.87	3.606	13.01	3.14159		
2 9 . 683	1.7557	3.0825	3.14159		
3 26.42	2 . 900	8.4125	3.14159		
4 61.01	4.4071	19.42	3.14159		
5 70.91	4 . 751	22 . 57	3.14159		<u> </u>
E2					

4 2.1 2.2 2.3 2.4 RAD AUTO REAL Use the spreadsheet to capture the data and explore the relationship between the area and radius of a circle.

HINT: You will need to square the radius.