Math Objectives

- Students will use a pre-made .tns file to study the composition of isometric transformations.
- Students will reflect a translated figure to create a glide reflection.
- Students will use appropriate tools strategically (CCSS Mathematical Practice).

Vocabulary

- glide
- reflection
- translation
- isometry

About the Lesson

- The estimated time for this activity is 30 to 45 minutes.
- Send the file Glide_Reflections.tns to student handheld devices. If you are planning for students to create the file, take time to follow the directions prior to facilitating the process with students.
- This activity is designed to be student-centered, with the teacher acting as a facilitator while students work cooperatively. The student worksheet is intended to guide students through the activity and provide a place to record their answers.

TI-Nspire ${ }^{\text {TM }}$ Navigator ${ }^{\text {TM }}$ System

- Use Screen Capture to observe students' work as they proceed through the activity.
- Use Live Presenter to have a student illustrate how he/she used a certain tool.

11	1.2	Glide_Retlections -	

Glide Reflections

TI-Nspire ${ }^{\text {TM }}$ Technology Skills:

- Download a TI-Nspire document
- Open a document
- Move between pages
- Grab and drag a point

Tech Tips:

- Make sure the font size on your TI-Nspire handheld is set to Medium.
- Once a function has been graphed, the entry line can be graphed by pressing ctril G. The entry line can also be expanded or collapsed by clicking the chevron.

Lesson Materials:

Create Instructions
Glide_Reflections_Create.pdf

Student Activity

Glide_Reflections_Student.pdf Glide_Reflections_Student.doc

TI-Nspire document
Glide_Reflections.tns

Visit www.mathnspired.com for lesson updates and tech tip videos.

Discussion Points and Possible Answers

Tech Tip: If students experience difficulty dragging a point, check to make sure that they have moved the arrow until it becomes a hand (ㄱ)). Press ctrl to grab the point and close the hand (s).

Move to page 1.2.

Part 1 - Exploring a translated triangle

On page 1.2, $\triangle P Q R$ maps onto $\triangle P^{\prime} Q^{\prime} R^{\prime}$ using a translation as determined by the vector at the top of the screen.

A translation is an example of an isometry since a translation produces an image that is congruent to the pre-image.

1. $\Delta P Q R \cong \Delta P^{\prime} Q^{\prime} R^{\prime}$
2. Grab and drag point A to change the magnitude and direction of the vector. Describe the changes that occur in image $\Delta P^{\prime} Q^{\prime} R^{\prime}$ as you change the vector.

Answer: The position of $\Delta P^{\prime} Q^{\prime} R^{\prime}$ changes, but there are no changes in the size, shape, or orientation of the image.

Next, you will make a line parallel to the vector through a point somewhere in the plane.

Step 1: Press Menu > Construction > Parallel.

Step 2: Move to a location below the triangles and press to mark a point.

Step 3: Move the cursor near the vector until you see $\mathrm{S}^{\text {m }}$ and the
 word vector. Press 5.

Step 4: Press esc to exit the Parallel tool.

Glide Reflections

To reflect $\Delta P^{\prime} Q^{\prime} R^{\prime}$ over the line, do the following:

Step 1: Press Menu > Transformation > Reflection.

Step 2: Move toward the translated triangle $P^{\prime} Q^{\prime} R^{\prime}$. Press to select this triangle.

Step 3: Move the cursor to the line and press
Step 4: Press esc to exit the Reflection tool.

3. Is the new image congruent to $\Delta P^{\prime} Q^{\prime} R^{\prime}$? How do you know?

Answer: Yes. The lengths of the sides of the pre-image are congruent to the lengths of the sides of the image.
4. Is the reflected image congruent to the original triangle, $\triangle P Q R$? How do you know?

Answer: Yes. The new reflected image is congruent to $\Delta P^{\prime} Q^{\prime} R^{\prime}$ and $\Delta P^{\prime} Q^{\prime} R^{\prime} \cong \triangle P Q R$; therefore, the new reflected image is congruent to the original triangle.
5. Using $P^{\prime \prime}, Q^{\prime \prime}$, and $R^{\prime \prime}$, write the label for each vertex of the reflected triangle in the figure at the right.

Answer: See the figure at the right.

6. An isometry is a transformation that produces an image that is congruent to the pre-image. What two isometric transformations were used in this activity?

Answer: translation and reflection

- When two or more transformations are performed in sequence to produce a single transformation, the result is called a composition of the transformations.
- One example of a composite transformation is a glide reflection. A glide reflection is a transformation in which every point P is mapped onto a point P " by the following steps:

1. A translation maps P onto P^{\prime}.
2. A reflection over a line parallel to the direction of the translation maps P^{\prime} onto $P^{\prime \prime}$.

Glide Reflections

7. Is a glide reflection an isometry? How do you know?

Answer: Yes, a glide reflection is an isometry because the image is always congruent to the pre-image.

Teacher Tip: This is a special case of the Composition of Isometries Theorem which states: The composition of two (or more) isometries is an isometry.

Wrap Up

Upon completion of the discussion, the teacher should ensure that students understand:

- What a composition of isometric transformations is.
- How to reflect a translated figure to create a glide reflection.

