Preliminary Test 1A

Name:

8 9 10 11 12

Question: 1

Convert 170° into radians.

Question: 2

Convert $\frac{5\pi}{9}$ into degrees.

Question: 3

If $\sin(x) = -\frac{3}{5}$ and $\pi \le x \le \frac{3\pi}{2}$ then which one of the following is true?

a)
$$\cos(x) = \frac{4}{5}$$
 b) $\cos(x) = -\frac{4}{5}$ c) $\tan(x) = \frac{3}{5}$ d) $\tan(x) = -\frac{4}{3}$ e) $\tan(x) = \frac{4}{3}$

$$\cos(x) = -\frac{4}{5}$$

$$\tan(x) = \frac{3}{5}$$

$$\tan(x) = -\frac{4}{3}$$

$$\tan(x) = \frac{4}{3}$$

Question: 4

If $\sin(\theta) \cdot \cos(\theta) = -\frac{\sqrt{3}}{4}$ then θ could be:

a)
$$\frac{\pi}{6}$$
 b) $\frac{\pi}{4}$ c) $\frac{\pi}{3}$

b)
$$\frac{\pi}{4}$$

c)
$$\frac{\pi}{3}$$

d)
$$\frac{2\pi}{3}$$

e)
$$\frac{7\pi}{6}$$

A possible equation for the graph shown could be:

a)
$$y = 2\cos(x) + 1$$

b)
$$y = 2\sin(x) + 1$$

c)
$$y = -2\cos(x) + 1$$

d)
$$y = -2\sin(x) + 1$$

e)
$$y = -\cos(x) + 1$$

Question: 6

Which one of the following will not have an *x* intercept:

a)
$$y = 2\sin(x) + 3$$

b)
$$y = 3\sin(x) + 2$$

c)
$$y = -\cos(x) + 1$$

$$d) \quad y = -2\cos(x) + 1$$

e)
$$y = \tan(x) - 2$$

Question: 7

Which one of the following equations has exactly 2 solutions? [Note the restricted domain for each]

a)
$$\sin\left(\frac{x}{2}\right) = \frac{1}{2}, \quad x \in [0, \pi]$$

b)
$$\cos\left(\frac{x}{2}\right) = \frac{1}{2}, x \in [0, \pi]$$

c)
$$\cos(2x) = \frac{1}{2}, x \in [0, 2\pi]$$

d)
$$\sin(2x) = \frac{1}{2}, x \in [0, \pi]$$

e)
$$\sin\left(\frac{x}{3}\right) = \frac{1}{2}, x \in [0, 2\pi]$$

Question: 8

If S is the sum of the solutions over the domain: $[-\pi, \pi]$, for which of the following equations will S = 0?

a)
$$\tan(x) = 1$$

$$b) \quad \cos(x) = \frac{1}{2}$$

$$\sin(x) = \frac{1}{2}$$

$$d) \quad \tan(2x) = 1$$

b)
$$\cos(x) = \frac{1}{2}$$
 c) $\sin(x) = \frac{1}{2}$ d) $\tan(2x) = 1$ e) $\sin(2x) = \frac{1}{2}$

