Preliminary Test 1A

Name:

\qquad

Question: 1

Convert 170° into radians.

Question: 2

Convert $\frac{5 \pi}{9}$ into degrees.

Question: 3

If $\sin (x)=-\frac{3}{5}$ and $\pi \leq x \leq \frac{3 \pi}{2}$ then which one of the following is true?
a) $\cos (x)=\frac{4}{5}$
b) $\quad \cos (x)=-\frac{4}{5}$
c) $\tan (x)=\frac{3}{5}$
d) $\tan (x)=-\frac{4}{3}$
e) $\quad \tan (x)=\frac{4}{3}$

Question: 4
If $\sin (\theta) \cdot \cos (\theta)=-\frac{\sqrt{3}}{4}$ then θ could be:
a) $\frac{\pi}{6}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{3}$
d) $\frac{2 \pi}{3}$
e) $\frac{7 \pi}{6}$

Question: 5

A possible equation for the graph shown could be:
a) $y=2 \cos (x)+1$
b) $y=2 \sin (x)+1$
c) $y=-2 \cos (x)+1$
d) $y=-2 \sin (x)+1$
e) $y=-\cos (x)+1$

[^0]
Question: 6

Which one of the following will not have an x intercept:
a) $y=2 \sin (x)+3$
b) $y=3 \sin (x)+2$
c) $y=-\cos (x)+1$
d) $y=-2 \cos (x)+1$
e) $y=\tan (x)-2$

Question: 7

Which one of the following equations has exactly 2 solutions?
[Note the restricted domain for each]
a) $\quad \sin \left(\frac{x}{2}\right)=\frac{1}{2}, \quad x \in[0, \pi]$
b) $\quad \cos \left(\frac{x}{2}\right)=\frac{1}{2}, \quad x \in[0, \pi]$
c) $\quad \cos (2 x)=\frac{1}{2}, \quad x \in[0,2 \pi]$
d) $\quad \sin (2 x)=\frac{1}{2}, \quad x \in[0, \pi]$
e) $\quad \sin \left(\frac{x}{3}\right)=\frac{1}{2}, \quad x \in[0,2 \pi]$

Question: 8

If S is the sum of the solutions over the domain: $[-\pi, \pi]$, for which of the following equations will $\mathrm{S}=0$?
a) $\tan (x)=1$
b) $\quad \cos (x)=\frac{1}{2}$
c) $\quad \sin (x)=\frac{1}{2}$
d) $\tan (2 x)=1$
e) $\quad \sin (2 x)=\frac{1}{2}$

[^0]: (C) Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

