About the Lesson

In this activity, students discover the trigonometric ratios through measuring the side lengths of similar triangles and calculating their ratios. The formal definitions of the sine, cosine, and tangent are presented. As a result, students will:

- Apply the sine, cosine, and tangent of angles to find missing side lengths.

Vocabulary

- similar triangles
- hypotenuse
- opposite leg
- adjacent leg
- sine
- cosine
- tangent

Teacher Preparation and Notes

- This activity is designed for use in an Algebra 1 classroom. It can also be used as a review in Algebra 2.
- This activity assumes the students have a basic understanding of similar triangles. Students are asked to use the Cabri ${ }^{\text {™ }} \mathbf{~ J r}$ App to measure the lengths of segments and angles, write and evaluate simple formulas, and perform a data capture. If students are unfamiliar with these functions of the handheld, extra time should be taken to explain them.
- Ensure that the Cabri ${ }^{\text {TM }}$ Jr App is loaded on each student's calculators before beginning the activity.

Activity Materials

- Compatible TI Technologies:

TI-84 Plus*

Tl-84 Plus Silver Edition*
-TI-84 Plus C Silver Edition
TI-84 Plus CE

* with the latest operating system (2.55MP) featuring MathPrint ${ }^{\text {TM }}$ functionality.

(2)asabri Junior app

Tech Tips:

- This activity includes screen captures taken from the TI-84 Plus CE. It is also appropriate for use with the rest of the TI-84 Plus family. Slight variations to these directions may be required if using other calculator models.
- Watch for additional Tech Tips throughout the activity for the specific technology you are using.
- Access free tutorials at http://education.ti.com/calculators/ pd/US/Online-Learning/Tutorials
- Any required calculator files can be distributed to students via handheld-to-handheld transfer.

Lesson Files:

- Trigonometric_Ratios_Student.pdf
- Trigonometric_Ratios_Student.doc
- TRIAN1.8xv
- TRIAN2.8xv
- TRIAN3.8xv

Tech Tip: Before beginning the activity, the files TRIAN1.8xv, TRIAN2.8xv, and TRIAN3.8xv need to be transferred to the students' calculators via handheld-to-handheld transfer or transferred from the computer to the calculator via TI-Connect ${ }^{\text {TM }}$ CE Software.

Problem 1 - Exploring a Triangle

To begin the activity, open the Cabri Jr ${ }^{\text {TM }}$ App by pressing apps and choosing it from the list. Open the file TRIAN1.

This file shows a triangle with sides A, B, and C.
Angle $A A$ is opposite side A, angle $B B$ is opposite side B, and angle $C C$ is opposite side C.

Drag the point labeled $B B$. Move your cursor over the point and press alpha to grab it. Then use the arrow keys to move it. When you are finished, press enter to let it go.

What happen as you drag point $B B$?

Measure each angle. Press graph to open the
F5: Appearance Menu. Choose Measure>Angle.

To measure angle $A A$, click on $B B$, then point $A A$, then point $C C$, in that order.

Repeat this process to measure all three angles.

Recall that the longest side of a right triangle is called the hypotenuse and the two shorter sides are called the legs.

Next measure side lengths A, B, and C. Go to F5: Appearance>Measure>D. \& Length

1. What kind of triangle is this?

Answer: It is a right triangle.

Repeat to measure all three sides.

Drag point $B B$ by moving your cursor over it and pressing the alpha button. You should be able to move the point $B B$ either up or down.

2. Which measurements of the triangle change? Which measurements stay the same?

Answer: The lengths of the three sides, A, B, and C change. The degree measures of the three angles $A A, B B$ and $C C$ do not change.
3. What word describes two triangles that have the same angles but different side lengths?

Answer: similar
4. Drag point $B B$ to complete the first three columns of the table. Calculate the other columns.

Answers:

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$\frac{\boldsymbol{A}}{\boldsymbol{B}}$	$\frac{\boldsymbol{A}}{\boldsymbol{C}}$	$\frac{\boldsymbol{B}}{\boldsymbol{C}}$
$\mathbf{2 . 0}$	4.0	4.5	0.5	0.444	0.889
$\mathbf{2 . 3}$	4.6	5.1	0.5	0.451	0.902
$\mathbf{2 . 5}$	5.0	5.6	0.5	0.446	0.893
$\mathbf{2 . 8}$	5.6	6.3	0.5	0.444	0.889
$\mathbf{3 . 0}$	6.0	6.7	0.5	0.448	0.896
$\mathbf{3 . 5}$	7.0	7.8	0.5	0.449	0.897
$\mathbf{4 . 0}$	8.0	8.9	0.5	0.449	0.899

5. How do the ratios for each of the similar triangles compare?

Answer: They are essentially the same for each triangle.
Note: Due to the calculator's rounding function, slight variations apply to $\frac{A}{C}$ and $\frac{B}{C}$.
6. Write a conclusion about the ratios of the side lengths of similar triangles.

Answer: The ratios of the side lengths of similar triangles will remains the same no matter what size the length of the sides are.

Problem 2 - Exploring Another Triangle

Open the file TRIAN2. Repeat the procedure from Problem 1

8. Is this triangle similar to the first triangle? Why or why not?

Descabri junior app

Answer: No, because all three pairs of angles aren't equal to one another.
9. Are all right triangles similar? Why or why not?

Answer: No, because the two acute angles in a right triangle can vary.

10. Drag point $B B$ to complete the first three columns of the table. Calculate the other columns.

Answers:

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$\frac{\boldsymbol{A}}{\boldsymbol{B}}$	$\frac{\boldsymbol{A}}{\boldsymbol{C}}$	$\frac{\boldsymbol{B}}{\boldsymbol{C}}$
$\mathbf{2 . 0}$	8.0	8.2	0.25	0.244	0.976
$\mathbf{1 . 8}$	7.2	7.4	0.25	0.243	0.973
$\mathbf{1 . 6}$	6.4	6.6	0.25	0.242	0.970
$\mathbf{1 . 4}$	5.6	5.8	0.25	0.241	0.965

11. How do the ratios of the side lengths of Triangle 2 compare to the ratio of the side lengths of Triangle 1?

Answer: While each ratio of sides of Triangle 2 differ than those of Triangle 1, they are still equal within the triangle.
12. Write a conclusion about the ratios of the side lengths of triangles that are similar and triangles that are not similar.

Answer: The ratios of side lengths of similar triangles are equal, while the ratios of side lengths of non-similar triangles are not.

Problem 3 - Introducing the Trigonometric Ratios
Open the Cabri Jr file TRIAN3.
13. Measure the side lengths.
$A=$ \qquad $B=$ \qquad $C=$ \qquad
Answers: $A=11.1 ; B=5.3 ; C=12.3$

Calculate the trigonometric ratios for $\angle A A$.
14. sine $\angle A A=\frac{A}{C} \approx$ \qquad
Answer: 0.902
15. cosine $\angle A A=\frac{B}{C} \approx$ \qquad
Answer: 0.431
16. tangent $\angle A A=\frac{A}{B} \approx$ \qquad
Answer: 2.094
17. What is the measure of angle $A A$? \qquad
Answer: $\approx 65^{\circ}$

Students are asked to use the calculator commands sin, cos, and tan to check their answers. It is important to emphasize to them that the above ratios as well as the angle measure were rounded. Point out that the trigonometric ratios can often be irrational values.

Problem 4 - Calculating the Trigonometric Ratios of a Different Angle

Using the same triangle in Cabri Jr file TRIAN3, write and calculate formulas using the side lengths A, B, and C to find sine $\angle B B$, cosine $\angle B B$, and tangent $\angle B B$.
18. sine $\angle B B=$ \qquad \approx \qquad

Answer: $\frac{5.3}{12.3} \approx 0.431$
19. cosine $\angle B B=$ \qquad

Answer: $\frac{11.1}{12.3} \approx 0.902$
20. tangent $\angle B B=\square \approx$ \qquad

Answer: $\frac{5.3}{11.1} \approx 0.477$
21. What is the measure of angle $B B$? \qquad
Answer: $\approx 25.5^{\circ}$

Students are again asked to use the calculator commands \sin, cos, and tan to check their answers.

Problem 5 - Finding Missing Side Lengths

22. Write a formula that relates 63°, the opposite side, and the hypotenuse. Solve for x.

Answer: $\sin \left(63^{\circ}\right)=\frac{x}{12} \approx 10.692 \mathrm{~cm}$

Trigonometric Ratios
23. Write a formula that relates 54°, the opposite side, and the adjacent side. Solve for x.

Answer: $\tan \left(54^{\circ}\right)=\frac{10}{x} \approx 7.265 \mathrm{~cm}$

