Activity Overview

Students will learn about inverse matrices in the context of encoding/decoding secret messages and then use inverse matrices to solve systems of equations.

Topic: Linear Algebra: Vectors \& Matrices

- Compute the product of any pair of matrices.
- Compute the inverse of a square non-singular matrix.
- Solve a linear system of n equations in n variables by computing the inverse of the coefficient matrix.

Teacher Preparation and Notes

- This investigation illustrates to students that (some) matrix multiplications can be "undone" by multiplying by an inverse matrix. Such inverse matrices can also be used to solve systems of equations.
- Prior to beginning this activity, review with students how to organize information into matrices. Students should also be familiar with multiplying matrices in TI-Nspire technology.
- This activity does not teach students the process used to set up and/or multiply matrices; rather it explains how to find the inverse matrix of an invertible 2×2 matrix and provides several examples of the types of problems that can be solved using inverse matrices. Students should already know how to multiply matrices by hand.
- To download the student and solution TI-Nspire document (.tns files) and student worksheet, go to education.ti.com/exchange and enter "10086" in the quick search box.

Associated Materials

- PrecalcWeek30_AllSystemsGo_worksheet_TINspire.doc
- PrecalcWeek30_AllSystemsGo.tns
- PrecalcWeek30_AllSystemsGo_Soln.tns

Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the quick search box.

- How Many Solutions? (TI-Nspire technology) - 9284
- Solving Systems of Linear Equations with ... Augmented Matrices (TI-Nspire technology) - 8838
- Solving Systems of Linear Equations from Four Perspectives (TI-Nspire technology) - 9210

Problem 1 - A secret message

This problem introduces students to the concept of an inverse matrix by having them explore using matrices to encode and decode secret messages.

On page 1.4, students are given the definition of the inverse of a 2×2 matrix, and they are asked to find the inverse of the encoding matrix on page 1.5.

Multiplying the encoding matrix by the decoding matrix should result in the identity matrix, since they are inverses. Be sure that students understand that this is true regardless of the order in which the inverse matrices are multiplied.

Finally, students are asked to use the decoding matrix on the encoded message to check that they are able to retrieve the original message.

1.2	1.3	1.4	1.5	RAD AUTO REAL

What is our decoding matrix, the inverse of our encoding matrix?
(Recall that $\operatorname{det}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a d-b c$.)
$\left[\begin{array}{ll}4 & 3 \\ 2 & 2\end{array}\right]^{-1}=\frac{1}{2} \cdot\left[\begin{array}{cc}2 & -3 \\ -2 & 4\end{array}\right]=\left[\begin{array}{cc}1 & -1.5 \\ -1 & 2\end{array}\right]$

Test your decoding matrix below. Multiplying a matrix by its inverse gives you the identity matrix.

$\left[\begin{array}{ll}4 & 3 \\ 2 & 2\end{array}\right] \cdot\left[\begin{array}{cc}1 & -1.5 \\ -1 & 2\end{array}\right]$	$\left[\begin{array}{ll}1 & 0 . \\ 0 & 1 .\end{array}\right]$
$\left[\begin{array}{cc}\mathbf{1} & -1.5 \\ -1 & 2\end{array}\right] \cdot\left[\begin{array}{ll}4 & 3 \\ 2 & 2\end{array}\right]$	$\left[\begin{array}{ll}1 . & 0 . \\ 0 & 1\end{array}\right]$
\mathbf{V}	

| 1.4 | 1.5 | 1.6 | 1.7 | RAD AUTO REAL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Now test the decoding matrix on our encoded message and check against the chart on
your worksheet. Did it work?

$\left[\begin{array}{cc}126 & 107 \\ 116 & 97 \\ 46 & 41\end{array}\right] \cdot\left[\begin{array}{cc}1 & -1.5 \\ -1 & 2\end{array}\right]$	$\left[\begin{array}{rrr}19 & 25 . \\ 19 & 20 . \\ 5 & 13 .\end{array}\right]$
	1/99

\section*{| 1.7 | 2.1 | 2.2 | 2.3 | RAD AUTO REAL |
| :--- | :--- | :--- | :--- | :--- |}

Write this system as a matrix equation.

$$
\begin{aligned}
& x-2 y+z=7 \\
& 3 x-5 y+z=14 \\
& 2 x-2 y-z=3 \\
& {\left[\begin{array}{ccc}
1 & -2 & 1 \\
3 & -5 & 1 \\
2 & -2 & -1
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
7 \\
14 \\
3
\end{array}\right] }
\end{aligned}
$$

On page 2.4, students will use the Calculator application to multiply the inverse of the coefficient matrix by the constant matrix to obtain the solution.

Be sure that students check their solutions on page 2.5. It is here that any errors in translating the system to a matrix equation will be revealed.

Then multiply the inverse of the coefficient matrix by the constant matrix. (You can use the Calculator application to find the inverse.)

| $\left[\begin{array}{lll}1 & -2 & 1 \\ 3 & -5 & 1 \\ 2 & -2 & -1\end{array}\right]^{-1} \cdot\left[\begin{array}{c}7 \\ 14 \\ 3\end{array}\right]$ | $\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$ |
| ---: | ---: | ---: |

1	2.2	2.3	2.4	2.5
RAD AUTO REAL				

It is always a good idea to check your
solutions back in the original systems of equations. Do this below.

$2-2 \cdot-1+3$	7
$3 \cdot 2-5 \cdot-1+3$	14
$2 \cdot 2-2 \cdot-1-3$	3
$i=$	
i	$1 / 3$

2.3	2.4	2.5	3.1	RAD AUTO REAL

How do you think you could use inverse matrices to find the equation of the parabola that passes through the points $(-1,5)$, $(2,-1)$, and $(3,13)$?

Recall that parabolas are of the form

$$
y=a x^{2}+b x+c
$$

$$
\begin{aligned}
& \begin{array}{|l|l}
\hline 2.5 & 3.1 \\
\hline
\end{array} \mathbf{3 . 2} 3.3 \\
& \text { Write the system AUTO REAL } \\
& \text { equation here: } \\
& a-b+c=5 \\
& 4 a+2 b+c=-1 \\
& 9 a+3 a+c=13 \\
& {\left[\begin{array}{ccc}
1 & -1 & 1 \\
4 & 2 & 1 \\
9 & 3 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
5 \\
-1 \\
13
\end{array}\right]}
\end{aligned}
$$

Students can confirm the solution ($a=4, b=-6$, and $c=-5$) by substituting the coordinates and verifying the equation holds. They can also confirm the solution by graphing the equation to see if it indeed passes through the three points.

Solutions - Student Worksheet Exercises

1. The inverse of the encoding matrix is $\left[\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right]^{-1}=\left[\begin{array}{cc}5 & -3 \\ -3 & 2\end{array}\right]$, so
$\left[\begin{array}{cc}18 & 27 \\ 51 & 81 \\ 37 & 58 \\ 60 & 100 \\ 18 & 27 \\ 85 & 137 \\ 59 & 93 \\ 51 & 79\end{array}\right] \cdot\left[\begin{array}{cc}5 & -3 \\ -3 & 2\end{array}\right]=\left[\begin{array}{cc}9 & 0 \\ 12 & 9 \\ 11 & 5 \\ 0 & 20 \\ 9 & 0 \\ 14 & 19 \\ 16 & 9 \\ 18 & 5\end{array}\right]$, which translates to I LIKE TI NSPIRE.
2. Writing the system as a matrix equation gives $\left[\begin{array}{ccc}7 & -8 & 5 \\ -4 & 5 & -3 \\ 1 & -1 & 1\end{array}\right] \cdot\left[\begin{array}{c}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}18 \\ -11 \\ 1\end{array}\right]$. Solving for the variable matrix yields a solution of $x=2, y=-3$, and $z=-4$.
3. Writing as a system of equations: Writing as a matrix equation:

$$
\begin{gathered}
a-b+c=3 \\
a+b+c=-3 \\
4 a+2 b+c=0
\end{gathered}
$$

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 1 \\
4 & 2 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right]
$$

Solving for the variable matrix, the solution is $a=2, b=-3$ and $c=-2$, which substituted into the equation for a parabola yields $y=2 x^{2}-3 x-2$.

