\qquad
\qquad

Activity 5

Bisectors Construct the geometric object by following the instructions below, and then answer the questions about the object.

1. Create and label segment $\overline{A B}$.
2. Create the perpendicular bisector of $\overline{A B}$.
a. From the Construct Toolbar, select Perpendicular Bisector.
b. Move cursor toward segment $\overline{A B}$ until message Perpendicular bisector of this segment appears. Click once.
c. From the Points Toolbar, select Intersection Point.
d. Move the pencil toward the intersection of $\overline{A B}$ and your line until the message Point at this intersection appears. Click once.
e. Label this point C.
3. Create a point on the line that contains point C and label it point D.

Figure 5.1
4. Measure, label, and record the following distances:
$A D=$ \qquad $B D=$ \qquad
5. How are the distances $A D$ and $B D$ related ?
6. Select Pointer and drag point D along the line.
7. Record the new distances below:
$A D=$ \qquad $B D=$ \qquad
8. Drag point D again and record the distances below:
\qquad
$A D=$ $B D=$
9. What can you conclude about a point on the perpendicular bisector of a segment?
\qquad
\qquad
\qquad
10. What type of triangle is $\triangle A D B$?
11. Clear the screen.
12. Create and label segment $\overline{A B}$.
13. Measure and label the length of $\overline{A B}$.
14. From the Construct Toolbar, select Measurement Transfer.
15. Move the pointer to the measurement of $\overline{A B}$ until the message This number appears. Click once.
16. Move the pointer to point A until the message This point appears. Click once.
17. Label this new point C.
18. Create segments $\overline{A C}$ and $\overline{C B}$.

Figure 5.2
19. Determine if point A is equidistant from B and C.
a. From Check Property Toolbar, select Equidistant.
b. Move the cursor toward point A until the message This point appears. Click once.
c. Move the cursor toward point B until the message This point appears. Click once.
d. Move the cursor toward point C until the message This point appears. Click once.
e. A dotted box appears. Drag this box to a corner on the screen and click.
20. Is point A equidistant from points B and C ?
21. Using the pointer, drag point A around the screen.
22. Is point A equidistant from points B and C ?
23. Create the perpendicular bisector of segment $\overline{B C}$.
a. From the Construct Toolbar, select Perpendicular Bisector.
b. Move the cursor toward segment $\overline{B C}$ until the message Perpendicular bisector of this segment appears. Click once.
24. Does point A appear to be on the perpendicular bisector of $\overline{C B}$?
25. Verify.
a. From the Check Property Toolbar, select Member.
b. Move the cursor toward point A until the message This point appears. Click once.
c. Move the cursor toward the perpendicular bisector until the message This line appears. Click once.
d. A dotted box appears. Drag this box to a corner on the screen and click.
26. Is point A a member of the perpendicular bisector?
27. Using the pointer, drag point A around the screen.
28. Is point A still equidistant from points B and C ?
29. Is point A still a member of the perpendicular bisector?
30. What can you conclude about a point that is equidistant from the two endpoints of a segment?
31. Clear the screen.
32. From the Line Toolbar, select Ray.
33. Create and label $\angle A B C$.

Figure 5.3
34. Create an angle bisector.
a. From the Construct Toolbar, select Angle Bisector.
b. Move the cursor to point A until the message This point appears. Click once.
c. Move the cursor to point B until the message This point appears. Click once.
d. Move the cursor to point C until the message This point appears. Click once.
35. Create a point on the angle bisector in the interior of the angle and label the new point D.
36. Measure the distance from point D to a side of the angle.

Note: The distance between a point and a line is measured on the perpendicular line connecting the point and the line.
a. From the Construct Toolbar, select Perpendicular Line.
b. Move the cursor to ray $B A$ until the message Perpendicular to this ray appears. Click once.
c. Move the pencil to point D until the message By this point appears. Click once.
d. From the Points Toolbar, select Intersection Point.
e. Create and label the point of intersection of the perpendicular line and ray $B A$ point E.
f. Measure and label the distance $D E$.
g. From the Draw Toolbar, select Hide And Show.
h. Move the cursor to line $\overline{D E}$ until the message This line appears. Click once. The line becomes a dotted line and the next click of the mouse makes it disappear.
37. Repeat steps 36a through 36h to find the distance between point D and ray $B C$. Label the point of intersection F.
38. Record the following distances below:
$D E=$ \qquad $D F=$ \qquad
39. Using the pointer, drag point D along the angle bisector.
40. Record the distances below:
$D E=$ \qquad $D F=$ \qquad
41. How does the distance from point D to each side of the angle compare?
42. Drag point D again and record the distances below:
$D E=$ \qquad $D F=$ \qquad
43. What can you conclude about a point on the angle bisector of an angle?
\qquad
\qquad
\qquad

