Dice Roll Activity Review

? What are the probabilities when tossing a number cube (die)?
o For Theoretical divide the number of successes by the total possibilities
o Express all results in decimal format for easier comparison.
o For Empirical:

- Roll a die 18 times. Record Tally then change to a decimal.
- Use TI-Nspire to simulate 180 rolls
- Now simulate 1800 rolls

Dots showing	1	2	3	4	5	6
Theoretical Probability						
Tally (out of 18)						
Change to a decimal						
TI-Nspire: 180 rolls						
TI-Nspire: 1800 rolls						

? What is the probability of getting any particular number on the Die?
? Is the probability the same for each side of the die? \qquad
? How did the counts change as the number of rolls increased? \qquad
? How does the graph support your answer? \qquad
? What would be the probability of getting a 3 or 4 ? \qquad
? What would be the probability of getting a 3 and 4 ? \qquad
? What would be the probability of getting a number greater than 2 ? \qquad
? What would be the probability of getting at least a 2? \qquad
? If the die had eight sides, what would be the probability of getting 1 ? \qquad $7 ?$
? What are the probabilities when tossing a pair of dice?
o For Theoretical divide the number of successes by the total possibilities
o Express all results in decimal format for easier comparison.
o For Empirical:

- Roll dice 18 times. Record Tally then change to a decimal.
- Use TI-Nspire to simulate 180 rolls
- Now simulate 1800 rolls

Dots Showing	2	3	4	5	6	7	8	9	10	11	12
Number Possible Combinations: $(1,1)=1:(1,2) \&(2,1)=2 ;$	1	2									
Theoretical Probability											
Tally (out of 18)											
Change to a decimal											
TI-Nspire: 180 rolls											
TI-Nspire: 1800 rolls											

2. Analysis

? What is the probability of getting 7 ? \qquad $11 ?$ \qquad
? Is the probability the same for each combination? \qquad

- Why (not) \qquad
? How does the graph support your answer? \qquad
? What would be the probability of getting a 3 or 4 ? \qquad
? What would be the probability of getting a 7 and then 11 ? \qquad
? What would be the probability of getting a number greater than 8 ? \qquad
? What would be the probability of getting at least an 8 ? \qquad
? If the dice had eight sides each,
- what would be the probability of getting 16 ? \qquad $14 ?$ \qquad
? Contrast the distributions of the one die versus the pair of dice?
? Which sample size produces a distribution that is closest to the theoretical?
? What conclusion(s) can you draw from this activity?

