
Comparing Linear and Exponential
Functions
\qquad

Grab the point and drag it to change the value of x and follow the directions on the student activity page.

Move to page 1.2.

1. Grab and drag the point to change the value of x. Complete the table below. Which column is growing faster?

\boldsymbol{x}	$\mathbf{3 x}$	$\mathbf{3}^{\boldsymbol{x}}$
0		
1		
2		
3		
4		
5		

2. a. As x increases from 2 to 3 in the table, how does the value of $3 x$ change?
b. As x increases by 1 , describe the pattern in the numbers in the $3 x$ column of the table.
3. a. As x increases from 2 to 3 in the table, how does the value of 3^{x} change?
b. As x increases from 3 to 4 in the table, how does the value of 3^{x} change?
c. As x increases by 1 , describe the pattern you notice in the numbers in the 3^{x} column of the table.
4. Complete the bottom row of the table for $x=6$. How did you determine the values for $3 x$ and 3^{x} ?

x	$3 x$	3^{x}

5. Why are the values for 3^{x} increasing faster than the values for $3 x$?
6. The function $f(x)=3^{x}$ is called an exponential function, while the function $f(x)=3 x$ is a linear function. Describe the differences in the two functions.

Move to page 2.1. Press atri and ctril to navigate through the lesson.
7. Drag the point on the arrow to the right to produce two graphs-one red and one blue. Use the information from the table in question 1 to identify which graph represents an exponential function and which graph represents a linear function. Justify your answer.
8. How do the graphs of $f(x)=3 x$ and $f(x)=3^{x}$ support your response to question 5 ?
9. Aaron says that the values of $f(x)=5^{x}$ will increase faster than the values of the linear function $f(x)=5 x$. Do you agree or disagree? Support your answer.

