EXPLORING THE TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT (K) WITH THE TI-NSPIRE

TEACHER NOTES

Teaching time:
 One class period

Topic:

Level:
Honors Chemistry I and/or Advanced Placement Chemistry

Prerequisite Knowledge: The student will be expected to have a working knowledge of Thermodynamics and equilibrium.

Materials:

TI-Nspire Calculator

Objectives:

Students will learn the following skills:

1. enter data into lists
2. name lists
3. use formulas to populate data
4. determine regression equations
5. graph data
6. plot regression lines
7. use the calculator application

Discussion:

The equilibrium constant (K) for any given reaction does not vary so long as the temperature of the reaction remains constant. The usual temperature for equilibrium calculations is room temperature $\left(25^{\circ}\right)$. If the temperature varies from this standard, then the equilibrium will shift left or right depending on whether the reaction is endothermic or exothermic and the value of K will either increase or decrease accordingly.

The relationship between K and Celsius temperature is not a linear relationship. To obtain a linear relationship, the reciprocal of the Kelvin temperature must be plotted against the natural $\log (L n)$ of K. When graphed in that fashion the linear regression equation will take the form:

$$
\operatorname{Ln} \mathrm{K}=-\left(\frac{\Delta \mathrm{H}^{0}}{\mathrm{R}}\right)\left(\frac{1}{\mathrm{~T}}\right)+\left(\frac{\Delta \mathrm{S}^{0}}{\mathrm{R}}\right)
$$

Where the slope of the line is $-\left(\frac{\Delta H^{0}}{\mathrm{R}}\right)$ and the y intercept is $\left(\frac{\Delta S^{0}}{\mathrm{R}}\right)$. The thermodynamic value of R is $8.3145 \mathrm{~J} / \mathrm{Kmol}$.

Teaching Tips:

Answers:

Part I

$$
\begin{array}{ll}
m=-1480 \mathrm{~K} & \Delta \mathbf{H}^{0}=12.3 \mathrm{~kJ} / \mathrm{mol} \\
b=2.72 & \Delta \mathbf{S}^{0}=22.6 \mathrm{~J} / \mathrm{Kmol} \\
r=-1.00 &
\end{array}
$$

Part II

$$
\begin{array}{ll}
m=-6860 \mathrm{~K} & \Delta \mathbf{H}^{0}=57.0 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{~b}=-9.25 & \Delta \mathbf{S}^{0}=-76.9 \mathrm{~J} / \mathrm{Kmol} \\
r=-1.00 &
\end{array}
$$

Questions:

Procedure B

1. An increase in temperature favors the products since the reaction is endothermic, so the value of $\mathrm{K}_{\text {eq }}$ increases.
2. This is an endothermic reaction since $K_{\text {eq }}$ increases with a temperature increase.
3. To increase the yield of the reaction, heat would need to be supplied to the system.

Procedure R

1. As temperature increases, the value of K_{w} increases.
2. Since the value of K_{w} increases, the reaction must be endothermic favoring the products with an increase in temperature.

Extension Answers:

1. | Temperature | pH |
| :---: | :--- |
| $0^{\circ} \mathrm{C}$ | 7.472 |
| $25^{\circ} \mathrm{C}$ | 7.000 |
| $35^{\circ} \mathrm{C}$ | 6.840 |
| $40^{\circ} \mathrm{C}$ | 6.767 |
| $50^{\circ} \mathrm{C}$ | 6.631 |
2. No, the pH of neutral water is only 7 at a temperature of $25^{\circ} \mathrm{C}$ because K_{w} is temperature dependent.
3. Temperature must be specified when pH values are recorded because of the temperature dependence of K_{w}.
