Conics as a Locus of Points A Cabri ${ }^{\circledR}$ Jr. Activity

Exploration 1

- Open a new Cabri® Jr. file and select Hide/Show (F5), select Axes from the submenu and press ENTER to hide the coordinate axes, if necessary.
- Draw a horizontal Segment (F2) and a Point (F2) F not on the segment.

The point is called the focus and the line is the directrix of a parabola.

- Construct a Segment from the focus \mathbf{F} to a point \mathbf{D} on the directrix. (It is not necessary to draw a point on the segment first, simply place the pencil on the segment when drawing the second endpoint.)

- Use the Perp. Bis. (F3) tool to construct the perpendicular bisector of segment FD.
- Through point D on the directrix, draw a line perpendicular to the directrix.
- Use the Point Intersection (F2) tool to construct point \mathbf{P} at the intersection of the perpendicular line through \mathbf{D} and the perpendicular bisector of $\mathbf{F D}$.

- Drag point \mathbf{D} along the directrix and observe the path of \mathbf{P}.

Point \mathbf{P} is equidistant from the focus \mathbf{F} and the directrix, which is illustrated in the steps below.

- Draw a Circle centered at point \mathbf{P} passing through point \mathbf{D} and observe where point \mathbf{F} is locate

- To show the property that \mathbf{P} is equidistant to \mathbf{D} and \mathbf{F}, complete $\triangle \mathbf{P D F}$ by drawing segment $\mathbf{F P}$.

Explain what type of triangle $\triangle P D F$ is and why this demonstrates that the points F and D are equidistant to point P.

Illustrate the path of point \mathbf{P} as point \mathbf{D} moves along the directrix.

- Use the Hide/Show tool (F5) to hide the circle (and triangle if drawn).
- Execute the Locus tool (F3) by first selecting the point \mathbf{P} (trace object) and then point \mathbf{D} (driving object).
- Drag the point \mathbf{D} right and left to see that the point \mathbf{P} moves along the locus points.

Perform sufficient exploration to demonstrate the fact that the point \mathbf{P} travels long a parabolic path.

- Drag point \mathbf{F} around the screen.

Explain what happens when the focus is moved further from or closer to the directrix.

- Use the Clear Object tool (F5) to clear the locus of points.

The envelope of the perpendicular bisectors by is created in the steps below.

- Engage the Locus tool (F3)
- Select the perpendicular bisector of segment $\mathbf{F D}$ as the trace object and the point \mathbf{D} as the driving object.

Exploration 2

In the construction of the parabola in Exploration 1, the path of the point \mathbf{D} along the directrix (a line segment) drove the motion of the locus point. The following illustrates what would happen if the path of the driving point were a circle instead of a segment.

- Clear:All (F5) previous objects.
- Construct a Circle (F2) on the screen and label its center \mathbf{O}.
- Use Point:Point On (F2) to construct point A on the circle (other than the radius point of the circle).
- From point A construct a Segment (F2) to a point \mathbf{B} inside the circle.
- Construct the Perpendicular Bisector (Perp. Bis F3) of the segment AB.

- Draw the line OA.
- Create the point of intersection of $\mathbf{O A}$ and the perpendicular bisector, and label it point \mathbf{P}.

- Use the Animate tool (F1) to move the point A around the circle.

Describe the path of point P.

- Press \triangle ENTER to stop the animation.
- Use the Locus tool (F3) to illustrate the path of \mathbf{P} by selecting \mathbf{P} as the trace object and \mathbf{A} as the driving object.

What do the points O and B represent for this curve?

- Clear (F5) the locus of points.
- Use the Locus tool (F3) to draw the envelope of the perpendicular bisectors using the perpendicular bisector as the trace object and the point \mathbf{A} as the driving object.

- Drag the point \mathbf{B} so that it is outside the circle.

Explain how is the curve changed.

Exploration 3

In Exploration 2 the locus was created when one end of a segment moved around a circular path. What would happen if the segment was replaced by a second circle through a fixed point?

- Clear All the objects on the screen.
- Construct a Circle (F2).
- Create Point (F2) B outside the circle.
- Construct a second Circle with the center on the first circle (not the radius point of the first circle) through point \mathbf{B}.

- Animate point A on the first circle.

What shape is outlined by the moving circle as the point A travels around the circle?

- Use the Locus tool (F3) to construct the envelope of the circles to help visualize the shape. The trace object is the circle that contains point \mathbf{B} and the driving object is point \mathbf{A}.
- Explore how the locus changes when point \mathbf{B} is on and inside the circle that contains \mathbf{A}.

Teaching Notes

1. Students usually encounter the definition of a parabola from a functional viewpoint as the graph of a secondary degree polynomial function, $f(x)=a x^{2}+b x+c$. A different way to approach a parabola is through one of its geometric definitions.

- A parabola is the locus of all points equidistant from a point (the focus) and a line (the directrix).

The construction uses this alternate definition to "build" the parabola as a locus of points. Measuring the distance from the point of intersection (P) to the focus and to the directrix will show that the definition of a parabola is satisfied. As point \mathbf{D} moves along the directrix, $\triangle \mathbf{P D F}$ is always isosceles because of the properties of the perpendicular bisector of its base. This means that $\mathbf{P F}=\mathbf{P D}$, or that point \mathbf{P} is equidistant from both a point and a line at the same time.

An alternate geometric definition of a parabola is demonstrated when a circle is drawn centered at point \mathbf{P} with radius PD. The parabola is defined to be the locus of the center of the circle passing through a fixed point (the focus) and tangent to a fixed line (the directrix). The lines drawn to construct point \mathbf{P} (the center of the circle) locate the center of the circle by bisecting a chord of the circle and drawing a line perpendicular to a tangent line to the circle at a point of tangency.
2. Students should observe that as the focus \mathbf{F} moves closer to the directrix, the parabola appears narrower (Figure 1). This is the same graphical effect seen when the value of \boldsymbol{a} in the function $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}$ is made larger causing a vertical stretch. When the focus is farther away from the directrix, the parabola appears wider, as seen when the value of \boldsymbol{a} in $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}$ is made smaller causing a vertical compression in the graph (Figure 2). And when the focus is below the directrix, the parabola opens downward as when the value of \boldsymbol{a} in $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}$ is less than zero (Figure 3).

Figure 1

Figure 2

Figure 3
3. If students have studied conic sections, then they will recognize the curves created as loci.

- An ellipse is the locus of points such that the sum of the distances from the two points (the foci) is a constant.
- A hyperbola is the locus of points such that the difference of the distances from the two points (the foci) is a constant.

The locus of point \mathbf{P} is an ellipse when the point \mathbf{B} is inside the circle (Figure 4). The points \mathbf{O} and \mathbf{B} are the foci. The envelope of the perpendicular bisectors of the ellipse is shown in Figure 5. When the point \mathbf{B} is outside the circle the locus is a hyperbola (Figure 6).

Figure 4

Figure 5

Figure 6
4. The envelope of the circle is a limacon with a loop if the point \mathbf{B} is outside the circle (Figure 7), a cardioid if point \mathbf{B} is on the circle (Figure 8), and a limacon with out a loop if point \mathbf{B} is inside the circle (Figure 9).

Figure 7

Figure 8

Figure 9

