Activity Overview

In this activity, students will learn how to find velocity and acceleration and identify when the object is at rest, accelerating, and decelerating. In addition, the students will work with related rate problems, exponential growth and decay, and cooling problems.

Concepts

- Calculating the velocity and acceleration at a given time for a moving object
- Identifying the intervals in which a moving object is moving at a constant speed, accelerating, or decelerating
- Applying the chain rule to solve problems involving related rates
- Using the derivative to solve problems in models of exponential growth and decay

Teacher Preparation

- This investigation uses fMax to answer a question. Students will have to restrict the domain to get the desired result. Students should be able to graph and take derivatives on their own.
- The screenshots on pages 2-5 demonstrate expected student results. Refer to the screenshots on pages 6 and 7 for a preview of the student TI-Nspire document (.tns file).
- To download the student and solution .tns files and student worksheet, go to education.ti.com/exchange and enter "9537" in the quick search box.

Classroom Management

- This activity is designed to be student-centered with the teacher acting as a facilitator while students work cooperatively. The student worksheet is intended to guide students through the main ideas of the activity and provide a place to record their observations.
- Students will need to be able to enter the functions and use the commands on their own.
- The ideas contained in the following pages are intended to provide a framework as to how the activity will progress. Suggestions are also provided to help ensure that the activity is completed successfully.
- The TI-Nspire solution document CalcAct41_TimeDeriv_Soln_EN.tns shows the expected results of working through the activity.

TI-Nspire ${ }^{m}$ Applications
Calculator, Graphs \& Geometry, Notes

Introduction

The main concept in this activity, time derivatives, relates to using time, t, as the basic underlying variable. For example, let the function be a position function. Velocity, $v(t)$, is the rate of change of distance, so it is the first derivative of the position function. Acceleration, $\mathbf{a}(\boldsymbol{t})$, is the time rate of change of the velocity (Are we getting faster or slower?), so it is the first derivative of velocity, as well as the second derivative of the position function.
If the function relates rates (such as a growth problem, decay problem, or cooling problem), then the function is a relationship among different variables, but all the variables change with respect to time.

The distance or position function is directional. Hence moving right or up on the coordinate axes is positive and moving down or left is negative. Thus we can have a negative velocity (a ball is dropping or a car is heading west or south) or a positive velocity (a ball is thrown up in the air or a car is heading east or north).
Problem 1 - Velocity and acceleration of position functions
Student will graph the function $s(t)=t^{3}-15 t^{2}+48 t$. When entering the function, they will need to use x instead of t. Students can use the Derivative and Solve commands to help find the answers.

- $v(t)=s^{\prime}(t)=3 t^{2}-30 t+48$

To find when the velocity is negative, positive and at rest, student will need to factor the velocity function. Remind students that $t \geq 0$.

- $v(t)>0$ when $t<2$ or $t>8$
$v(t)<0$ when $2<t<8$
$v(t)=0$ when $t=2, t=8$
To find when the acceleration is negative, positive, or constant, students will need to find the zeros of the acceleration function.
- $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)=6 t-30$
- $a(t)>0$ when $t>5$
$a(t)<0$ when $t<5$

Find $v(t)$ and $a(t)$ using the Derivative command.

II-nspire"cAS

Students are to graph the function $s(t)=\sin \left(\frac{\pi t}{3}\right)$.

- $v(t)=s^{\prime}(t)=\frac{\pi}{3} \cos \left(\frac{\pi t}{3}\right)$

When the students use the Solve command, a series of terms will appear. Remember: $\cos (t)>0$ in the interval $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. Adjusting for the period, $\cos \left(\frac{\pi t}{3}\right)>0$ on ($-1.5,1.5$).

- $v(t)>0$ when t is in $(-1.5 \pm 6 n, 1.5 \pm 6 n)$
$v(t)<0$ when t is in $(1.5 \pm 6 n, 4.5 \pm 6 n)$
$v(t)=0$ when $t=1.5 \pm 3 n$.
- $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)=\frac{-\pi^{2}}{9} \sin \left(\frac{\pi t}{3}\right)$
- $a(t)>0$ when t is in $(-3 \pm 6 n, \pm 6 n)$
$a(t)<0$ when t is in $(\pm 6 n, 3 \pm 6 n)$
$a(t)=0$ (constant speed) when $t= \pm 3 n$
In this exercise, the students can use the fMax command. Because the curve is a parabola oriented downward, they do not need to restrict the domain.

The value the students get is the time. They still have to evaluate that time in the function: $s(7 / 2)=196$ feet.
The ball lands back on the ground when $t=7$. Students can use Solve on the original equation to find that $t=0$ when the ball was shot vertically and $t=7$ when the ball slams into the ground.

Problem 2 - Using the chain rule in related rate problems
Because the rate the radius of the balloon is changing is $\frac{d r}{d t}=3 \mathrm{~cm} / \mathrm{min}$, the equation for the radius at time t is $r=3 t$. Student can use this equation to find the time at which the radius of the balloon is $8 \mathrm{~cm}(t=2.67$ minutes).
Students will then take the derivative of the volume with respect to time. $\frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}$ $\frac{d V}{d t}=4 \pi(8 \mathrm{~cm})^{2}(3 \mathrm{~cm} / \mathrm{min})=768 \pi$ cubic $\mathrm{cm} / \mathrm{min}$

4	1.6	1.7	1.8 Rad auto real	
3	${ }^{y} \quad \mathrm{f} 2(x)=\sin \left(\frac{\pi \cdot x}{3}\right)$			
0.5				

1.6	1.7	1.8	1.9	RAD AUTO REAL

Find $v(t)$ and $a(t)$ using the Derivative command.

The rate that the radius of the ripple is changing is $\frac{d r}{d t}=40 \frac{\mathrm{~cm}}{\mathrm{~s}}$. So the equation of the radius at t is $r=40 t$.
The area of the ripple for any radius and its time derivative is $A(t)=\pi r^{2} \rightarrow \frac{d A}{d t}=2 \pi r \frac{d r}{d t}$.

At $t=1, r=40(1)=40 \mathrm{~cm}$.
At $t=3, r=40(3)=120 \mathrm{~cm}$.
At $t=5, r=40(5)=200 \mathrm{~cm}$.
From the problem, the rate of the car traveling east is $x=75 t$ and the rate of the car traveling north is $y=20 t$. Because the cars are traveling at right angles, the distance between the cars is the hypotenuse of the right triangle.
$s(t)=\sqrt{x^{2}+y^{2}} \rightarrow s(t)=\sqrt{(75 t)^{2}+(20 t)^{2}}$
So $s(t)=5 t \sqrt{241} \rightarrow s^{\prime}(t)=5 \sqrt{241}$
The $\operatorname{sign}(t)$ in the answer reflects the fact that the device does know whether t is positive or negative. Here, the answer should be positive.

Problem 3 - Growth and decay derivatives

In the growth problem,

- $A(0)=200$
$A(1)=450$

$$
450=200 e^{k} \rightarrow 2.25=e^{k} \rightarrow 2 \ln (3 / 2)=k
$$

- $A(t)=200 e^{t(2 \ln (3 / 2))}$

$$
A(3)=200 e^{(3)(2 \ln (3 / 2))}=2278.13
$$

- $A^{\prime}(t)=(\ln (2.25)) \cdot 200 e^{t \ln (2.25)}$

$$
A^{\prime}(3)=(\ln (2.25)) \cdot 200 e^{(3) \ln (2.25)}=1847.4
$$

Students are to solve $A(t)=50,000$. The nSolve command gives the decimal time rather than a fraction. ($t=6.8088 \mathrm{hr}$)

T1-nspire cas

In the decay problem,

- $A(0)=200$,

$$
A(30)=100(\text { half of } A(0))
$$

$$
100=200 e^{30 k} \rightarrow k=\frac{-\ln (2)}{30}
$$

- $A(t)=200 e^{-\frac{t \cdot \ln 2}{30}}$

$$
A(100)=200 e^{-\frac{100 \cdot \ln 2}{30}}=19.84
$$

- $A^{\prime}(t)=\frac{-20 \cdot \ln (2) \cdot 2^{-\frac{t}{30}}}{3}$

$$
A(100)=\frac{-20 \cdot \ln (2) \cdot 2^{-\frac{100}{30}}}{3}=-0.458
$$

Students solve $1=200 e^{-t \ln (2)}$ for t, nSolve gives 229.316 years.

Problem 4 - Cooling derivatives

In this problem, lowercase t is time and uppercase T is temperature. Remind students to be careful with the case of the letters.

- $T(0)=120, T(30)=100, T($ sur $)=70$, so $c=50$ $100=70+50 e^{30 k} \rightarrow k=\frac{-\ln (5 / 3)}{30}$.
- $T=70+50 e^{\frac{-\ln (5 / 3)}{30} t}$
- Solve for t. It will take 135.2 minutes.

Time Derivatives - ID: 9537

(Student)TI-Nspire File: CalcAct41_TimeDeriv_EN.tns

1.1	1.2 1.3 1.4 Pad auto Real	\square
80	y	
20		
	0.5	12
(6) E $^{\text {E }}$ f $(x)=$		ล

2.2	2.3	2.4	2.5	RAD AUTO REAL
Two cars leave an intersection				
simultaneously. One car travel east on the				
interstate at 75 mph . The other car travels				
north on a gravel road at 20 mph . How fast is				
the distance between the two cars changing?				
Hint: What is the distance formula?				

2.5	2.6	3.1	3.2
A bacteria culture initially contains 200 cells			
and grows at a rate proportional to its size.			
After an hour, the population has increased to			
450 cells.			
What is the value of k ?			
What is the population size after 3 hours?			
What is the rate of growth after 3 hours?			
When will the population reach 50,000 cells?			

| 2.4 2.5 2.6 3.1
 RAD AUTO REAL
 In exponential growth and decay problems,
 the rate of increase/decrease is proportional
 to the amount present.
 $A(t)=\mathbf{e}^{k+c}=A(0) \mathbf{e}^{k t}$
 $\frac{d A}{d t}=k A, k>0$ for growth and $k<0$ for decay |
| :--- | :--- | :--- | :--- | :--- |

4.1	3.2	3.3	3.4	RAD AUTO REAL	\square

The half-life of cesium 137 is 30 years. Suppose we have a 200 mg sample.
What is the value of k ?
How much remains after 100 years?
What is the rate of decay after 100 years?
After how long will only 1 mg remain?

3.4	3.5	4.1
4.2		
A cup of coffee has temperature $120^{\circ} \mathrm{F}$ and		
take 30 minutes to cool to $100^{\circ} \mathrm{F}$ in a $70^{\circ} \mathrm{F}$		
room.		
What is the value of k ?		
What is the equation of the cooling function?		
How long will it take for the coffee to cool to		
$75^{\circ} \mathrm{F}$?		

A cup of coffee has temperature $120^{\circ} \mathrm{F}$ and take 30 minutes to cool to $100^{\circ} \mathrm{F}$ in a $70^{\circ} \mathrm{F}$ room.

What is the value of k ?
What is the equation of the cooling function?
How long will it take for the coffee to cool to $75^{\circ} \mathrm{F}$?

