Number & Algebra Assessment

ACMNA231 - Index Laws

Name:					Assessment		Navigator	Student	30 m	
Score:						Assessment	,	vavigatoi	Student	3011
Tead	her:									
Q.1.	Wh	ich one of the	follov	ving shows a c	orrect	simplification of	of: a ²	$^2 \times a^3$?		
	a)	a^5	b)	$(a^2)^3$	c)	a^6	d)	$2a^5$	e)	$(a^3)^2$
Q.2.	Which one of the following shows a correct simplification of: $2x^3 \times 3x^4$?									
	a)	$6x^{12}$	b)	$5x^{12}$	c)	$5x^7$	d)	$6x^7$	e)	$(6x^3)^4$
Q.3.	Wh	ich one of the	follov	ving is not equ	iivalen	at to: $8y^9$?				
	a)	$2y^6 \times 4y^3$	b)	$4y^6 + 4y^3$	c)	$8y^8 \times y$	d)	$8y^5 \times y^4$	e)	$(6+2)y^{9}$
Q.4.	The expression $\displaystyle rac{b^6}{b^2}$ can also be written as:									
	a)	b^3	b)	b^{-4}	c)	b^4	d)	b^8	e)	3
Q.5.	Wh	ich one of the	follov	ving is equal to	$\frac{9c^{12}}{3c^4}$	² - ?				
						$6 \times c^{(12-4)}$	d)	$6 \times c^{(12+4)}$	e)	$3c^{(12+4)}$
Q.6.	The expression $\frac{t^5}{t^6}$ can also be written as:									
	a)	t	b)	<i>−t</i>	c)	$\frac{5}{6}$	d)	$t^{\frac{5}{6}}$	e)	t^{-1}
Q.7.	When simplified, $2a^{-1} \times 4b^3 \times a^3b^4$, can be written as:									
	2)	c 217	h)	01.12	c)	0. 217	٩/	0 -3, 12	۵۱	0.7

- Which of the following shows a correct simplification of: $a^2 \times b^2$? Q.8.
 - a) ab^4

- b) $(ab)^2$ c) $(ab)^4$ d) $a^4 \times b^4$ e) $\sqrt{a \times b}$
- When simplified $\frac{x^2y^3z}{x^6y^7z^2} \times \frac{x^7y^{10}z^4}{xy^6z^2}$ is equal to:
- x^3 b) $\frac{x^8}{v^{12}}$ c) $x^{-2}z^{-1}$ d) x^2z e) x^2yz

- Q.10. When simplified $\frac{(2x^5y^{-1})^2}{x^3y} \div \frac{8xy^{-3}}{5x^4y^5}$ is equal to:

- a) $\frac{5x^{10}y^5}{2}$ b) $\frac{5x^{10}}{2y^4}$ c) $\frac{32x^2}{5y^{15}}$ d) $\frac{5x^{10}}{-2y^4}$ e) $\frac{2}{5x^{10}y^5}$