TI-*nspire*™

$\lim_{x\to 0} \frac{\sin(x)}{x} - A \text{ Linearization Approach}$

by – Paul W. Gosse

Activity overview

This activity uses the linearization of the function y = sin(x) at the point (0,0) to argue that the

 $\lim_{x \to 0} \frac{\sin(x)}{x} = 1$. In particular, the linearization of $y = \sin(x)$ is symbolically calculated and graphed, as is the tangent line to $y = \sin(x)$ for values of x, as $a \to 0^+$ (which is done by means of a slider). This is a natural and strong approach for developing an understanding of $\lim_{x \to 0^+} \frac{\sin(x)}{x}$.

Traditionally, this limit would be approached from a table of values point of view, or a geometric point of view which is actually similar to the approach offered here, or, later, using L'Hospital's Rule. What is different about this approach is that the limit $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$ is approachable in terms that seem much more concrete to the average Calculus student, and de-mystifies $\lim_{x\to 0} \frac{\sin(ax)}{ax} = 1$ quite quickly. In particular, visualization of the tangent/linearization at a point, is dynamic and interactive producing a convincing argument that $\sin(x) = x$ as $x \to 0^+$.

Concepts

First derivative, chain rule, tangent line, linearization of functions, limits, fundamental trigonometric limit, L'Hospital's Rule.

Teacher preparation

This activity is fairly robust and requires little support in terms of preparation. Prior to completing this activity, students should be able to determine the linearization of y = sin(x) at a point, and should

understand the Chain Rule since $\lim_{x\to 0} \frac{\sin(ax)}{ax} = 1$ engages the chain rule to justify the linearization. The activity uses the derivative command $\frac{d}{dx}(f(x))$ found in the Calculations-Calculus menu and skills common to determining the tangent line to a curve at a given point. This activity may best be done as a prelude to L'Hospital's Rule after establishing the derivative of $y = \sin(x)$.

Classroom management tips

Few classroom tips are required. The activity is self-explanatory. Students should compare this result to L'Hospital's Rule and consider why, as $x \rightarrow a$, this approach can be effective.

TI-Nspire Applications

Notes (including Q&A), Calculator, G&G.

 $\lim_{x \to 0} \frac{\sin(x)}{x} - \text{A Linearization Approach}$ by - Paul W. Gosse

by: Paul W. Gosse Grade level: secondary, college Subject: mathematics Time required: 45 to 90 minutes

Materials: TI-Nspire CAS

Step-by-step directions

The activity is self-explanatory with very little preparation and explanation needed. Answers, however, are offered below.

Assessment and evaluation

- The activity may be assessed by asking students to evaluate similar trigonometric limits as $x \rightarrow 0$ justifying their results.
- Answers: [1.6] Notice that the tangent line approaches y = x; [1.8] The equation is y = x once x = 0; [1.10] This page links pages 1.6 & 1.8 together as the same equation; [1.11] The limit may be rewritten as $\lim_{x\to 0} \frac{x}{x}$ which simplifies to $\lim_{x\to 0} \frac{1}{1} = 1$; [1.15] $\lim_{x\to 0} \frac{\sin(5x)}{5x} = \lim_{x\to 0} \frac{5x}{5x} = \lim_{x\to 0} \frac{1}{1} = 1$; Similarly, [1.16] $\lim_{x \to 0} \frac{\sin(ax)}{ax} = \lim_{x \to 0} \frac{ax}{ax} = \lim_{x \to 0} \frac{1}{1} = 1.$

Activity extensions

- Students could apply the same approach to $\lim_{x \to 0} \frac{\cos(x)}{x}$ or similar derivatives.
- In many cases, determining the limit of the ratio of two functions can be clarified by examining the ratio of their respective linearizations.

Student TI-Nspire Document

SinxOverx ALinearizationApproach EN.tns

Important Concepts The linearization of any function at a point (a,f(a)) is given by: y-f(a)=f'(a)·(x-a) We approach the limit by redefining y = sin(x)using its linearization.

(1)

- A Linearization Approach

by: Paul W. Gosse Grade level: secondary, college Subject: mathematics Time required: 45 to 90 minutes

1.4 1.5 1.6 ► SinxOverx_..._EN ▼

First, use page 1.7 and drag **a** to the left (i.e., towards 0). What do you notice as **a**

Question

Answer

 $\rightarrow 0$ from the right?

Materials: TI-Nspire CAS

*

	40	X
f1(x) and its linearization have been defi	ined	^
using the commands below.		₽
Define $f(x) = \sin(x)$	Done	î
Define $I(x) = \left(\frac{d}{dx}(fI(x)) x=a\right) \cdot (x-a) + fI(a)$		
	Done	I
Define $f^{2}(x) = l(x)$	Done	
70	3/9	9

	X
Question	k
Using page 1.7, what is the equation of the linearization of $y = \sin(x)$ as $x \rightarrow 0$ (i.e., at $x = 0$)?	
Answer 😤	

The construction on page 1.7 has several key pieces
 a slider on the top left for varying a simulating what happens to the linearization as a →0 from the right.
 a tangent line constructed to f1(x) with its equation updating as it is moved.

	Î×
Question	\
Now, use page 1.7 and drag the tangent line toward $x=0$. What do you notice?	
Answer 😤	

	٩C
Question	
Based on the linearization of $y = sin(x)$ at (0,0), how might the limit $sin(x)/x$ be re-written?	
Answer 😤	

	(1) E
Re-visit page 1.7	
Re-define $f1(x)$ as $sin(5\cdot x)$, and apply the	
same exploration.	
Now, consider	
$\lim_{x\to 0} \frac{\sin(5x)}{5x}$ substituting the	•
linearization of $y=\sin(5\cdot x)$ at (0,0).	ļ

【 1.7 1.8 1.9 ▶ *SinxOverxEN ▼ 🛛 🖏 🗙	
You should notice that the linearization and	I
the tangent line coincide as $\mathbf{a} \rightarrow 0^+$ (i.e., $\mathbf{x} \rightarrow 0^-$	
⁺ for the tangent line). In fact, they are the	
same.	

<1.10 1.11 1.12 ► *SinxOverxEN 🛍 🛛
Based on the previous page, we have some justification for stating that
$\lim_{x\to 0} \frac{\sin(x)}{x} = \lim_{x\to 0} \frac{x}{x} = 1.$

	X
Question	k
What is $\lim_{x\to 0} \frac{\sin(5x)}{5x}$?	
Answer 😤	

by: Paul W. Gosse Grade level: secondary, college Subject: mathematics Time required: 45 to 90 minutes

Materials: TI-Nspire CAS

Question	×	Weca
		page
What is $\lim_{x\to 0} \frac{\sin(ax)}{2}$?		for the
ax ax		The fo
		insigh
		sin(k)
		point
Answer	*	

<1.15 1.16 1.17 ► *SinxOverxEN 🛪	×
We can use the calculus tools on a calculator)
page to verify some of the calculations used	
for the linearization.	

The following calculator page offers some insight into the slope of the linearization of y = sin(kx) as $x \rightarrow 0$ which, when applied at the point (0,0) gives y=kx.

4 1.16 1.17 1.18 ▶	*SinxOverxEN 👻 🛛 🛍	×
$\frac{d}{dx}(\sin(5\cdot x))$	5 cos(5 x)	ĵ
5.cos(5.x) x=0	5	
$\frac{d}{dx}(\sin(k\cdot x))$	k·cos(k·x)	
$\frac{d}{dx}(\sin(k\cdot x)) x=0$	k	
		2
	4/5	99

