$\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$ - A Linearization Approach
 by - Paul W. Gosse

Activity overview

This activity uses the linearization of the function $y=\sin (x)$ at the point $(0,0)$ to argue that the $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$. In particular, the linearization of $y=\sin (x)$ is symbolically calculated and graphed, as is the tangent line to $y=\sin (x)$ for values of x, as $a \rightarrow 0^{+}$(which is done by means of a slider). This is a natural and strong approach for developing an understanding of $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$.

Traditionally, this limit would be approached from a table of values point of view, or a geometric point of view which is actually similar to the approach offered here, or, later, using L'Hospital's Rule. What is different about this approach is that the limit $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$ is approachable in terms that seem much more concrete to the average Calculus student, and de-mystifies $\lim _{x \rightarrow 0} \frac{\sin (a x)}{a x}=1$ quite quickly. In particular, visualization of the tangent/linearization at a point, is dynamic and interactive producing a convincing argument that $\sin (x)=x$ as $x \rightarrow 0^{+}$.

Concepts

First derivative, chain rule, tangent line, linearization of functions, limits, fundamental trigonometric limit, L'Hospital's Rule.

Teacher preparation

This activity is fairly robust and requires little support in terms of preparation. Prior to completing this activity, students should be able to determine the linearization of $y=\sin (x)$ at a point, and should understand the Chain Rule since $\lim _{x \rightarrow 0} \frac{\sin (a x)}{a x}=1$ engages the chain rule to justify the linearization. The activity uses the derivative command $\frac{d}{d x}(f(x))$ found in the Calculations-Calculus menu and skills common to determining the tangent line to a curve at a given point. This activity may best be done as a prelude to L'Hospital's Rule after establishing the derivative of $y=\sin (x)$.

Classroom management tips

Few classroom tips are required. The activity is self-explanatory. Students should compare this result to L'Hospital's Rule and consider why, as $x \rightarrow$ a, this approach can be effective.

TI-Nspire Applications

Notes (including Q\&A), Calculator, G\&G.

[^0] ©2010 Texas Instruments Incorporated
by - Paul W. Gosse

$\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$ - A Linearization Approach

by: Paul W. Gosse
Grade level: secondary, college
Subject: mathematics Time required: 45 to 90 minutes

Materials: TI-Nspire CAS

Step-by-step directions

The activity is self-explanatory with very little preparation and explanation needed. Answers, however, are offered below.

Assessment and evaluation

- The activity may be assessed by asking students to evaluate similar trigonometric limits as $x \rightarrow 0$ justifying their results.
- Answers: [1.6] Notice that the tangent line approaches $y=x$; [1.8] The equation is $y=x$ once $x=0$; [1.10] This page links pages 1.6 \& 1.8 together as the same equation; [1.11] The limit may be rewritten as $\lim _{x \rightarrow 0} \frac{x}{x}$ which simplifies to $\lim _{x \rightarrow 0} \frac{1}{1}=1$; [1.15] $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{5 x}=\lim _{x \rightarrow 0} \frac{5 x}{5 x}=\lim _{x \rightarrow 0} \frac{1}{1}=1$; Similarly, [1.16] $\lim _{x \rightarrow 0} \frac{\sin (a x)}{a x}=\lim _{x \rightarrow 0} \frac{a x}{a x}=\lim _{x \rightarrow 0} \frac{1}{1}=1$.

Activity extensions

- Students could apply the same approach to $\lim _{x \rightarrow 0} \frac{\cos (x)}{x}$ or similar derivatives.
- In many cases, determining the limit of the ratio of two functions can be clarified by examining the ratio of their respective linearizations.

Student TI-Nspire Document

SinxOverx_ALinearizationApproach_EN.tns

Important Concepts
The linearization of any function at a point
($\mathrm{a}, \mathrm{f}(\mathrm{a})$) is given by:

$$
y-f(a)=f^{\prime}(a) \cdot(x-a)
$$

We approach the limit by redefining $y=\sin (x)$ using its linearization.

$\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$ - A Linearization Approach

by: Paul W. Gosse Grade level: secondary, college
Subject: mathematics
Time required: 45 to 90 minutes

Materials: TI-Nspire CAS

The construction on page 1.7 has several key pieces...

- a slider on the top left for varying a
simulating what happens to the linearization
as $\mathbf{a} \rightarrow 0$ from the right
- a tangent line constructed to $\mathbf{f 1}(x)$ with its equation updating as it is moved.

Question
Based on the linearization of $y=\sin (x)$ at $(0,0)$, how might the limit $\sin (x) / x$ be re-written? Answer

Re-visit page 1.7
Re-define $f 1(x)$ as $\sin (5 \cdot x)$, and apply the
same exploration.
Now, consider
$\quad \lim _{x \rightarrow 0} \frac{\sin (5 x)}{5 x}$ substituting the
linearization of $y=\sin (5 x)$ at $(0,0)$.

1.4	1.5		
Question			First, use page 1.7 and drag a to the left
:---			
(i.e., towards 0). What do you notice as a			
$\rightarrow 0$ from the right?			

You should notice that the linearization and the tangent line coincide as $\mathbf{a} \rightarrow 0^{+}$(i.e., $x \rightarrow 0$
${ }^{+}$for the tangent line). In fact, they are the same.
 Based on the previous page, we have some justification for stating that

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0} \frac{x}{x}=1
$$

Question	
What is $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{5 x} ?$	
Answer	人

$\lim _{x \rightarrow 0} \frac{\sin (x)}{x}-A$ Linearization Approach
by: Paul W. Gosse Grade level: secondary, college Subject: mathematics
Time required: 45 to 90 minutes
Materials: TI-Nspire CAS

[^0]: $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$-A Linearization Approach

