Points of Intersection and Zeros of Functions

by

Mary Ann Connors

Department of Mathematics
Westfield State College
Westfield, MA 01086

Textbook Correlation: Key Topic

- Pre-Requisites: Functions and Equations

NCTM Principles and Standards:

- Process Standard
- Representation
- Connections

Exercises:

1. Solve $e^{3 x}=1-3 x^{2}$.

Answer:

Method I

a. Graph $y 1(x)=e^{3 x}$ and $y 2(x)=1-3 x^{2}$. Find the points of intersection of y 1 (x) and y 2 (x). Reproduce the screens below on your TI-89 (TI-92 Plus).

Comment: $\mathrm{x}=0$ is an exact solution. $\mathrm{X}=-.51131$ is an approximate solution.
b. To solve numerically, look at the table to find the values of x where $y 1(x)=$ y2(x). You can also verify the values on the Home Screen.

c. Use the solve command on the Home Screen to solve symbolically (algebraically).

Method II

a. Graph $\mathrm{y} 3(\mathrm{x})=e^{3 x}-\left(1-3 x^{2}\right)$. Find the zeros of $\mathrm{y} 3(\mathrm{x})$.

Repeat the procedure to approximate the zero at $x \approx-.51131$
Note: The number of display digits in fixed or floating point is selected with the MODE key. Float 6 is the default.

b. Follow the procedures depicted in Method I for the numerical analysis using the Table.
c. Use the solve command on the Home Screen for the symbolic analysis. Alternatively, press F2 (Algebra), 4:zeros(and enter the function on the Home screen as illustrated below.

Additional Exercise:

Solve $x^{3}=3 x+2$ graphically, numerically and analytically.

