Open the TI-Nspire document Solving_Logarithmic_Equations.tns.

We know that $\log_3 3 = 1$ and $\log_3 9 = 2$, but is there an approximate solution to the equation $\log_3 x = 1.5$? An exact solution? In this activity, you will explore the answer to these questions numerically, graphically, and algebraically.

◀ 1.1	1.2	1.3 🕨	Solving	_loga…on	ه ∼ ^د	: (<mark>1</mark> 🗙			
Solving Logarithmic Equations									
		-				_			
Goito	the n	extinad	e to star	t solvin	r				
		equatio		C O O CO III (9				
-									

1. Estimate the solution to the equation $\log_3 x = 1.5$ using the following numeric pattern.

 $log_3 3 = 1$ $log_3 x = 1.5$ $log_3 9 = 2$

Move to page 1.2.

Press ctrl and ctrl to

- 2. The table shows inputs and outputs for the function $f(x) = \log_3 x$.
 - a. Input your estimate from question 1 into cell A2. Input other values to get the output as close as possible to 1.5. Record your closest input and output below:

$$f(3) = 1$$
$$f(\underline{\qquad}) = \underline{\qquad}$$
$$f(9) = 2$$

b. Is there an input value that results in an output value of exactly 1.5?

Move to page 1.3.

- 3. The graph of the function $f(x) = \log_3 x$ is shown along with its inverse $f^{-1}(x) = 3^x$. Point *P*' is the reflection of point *P* over the line y = x.
 - a. Suppose the coordinates of $P \operatorname{are}(3, 1)$. Write an exponential equation by substituting the coordinates of P' into the function $f^{-1}(x) = 3^x$.

- b. Move point *P*' so that the input of the function $f^{-1}(x) = 3^x$ is 1.5. According to the graph, what is the *approximate* solution to the equation $\log_3 x = 1.5$? Why is this an approximate solution?
- c. Recall that the composition of any function and its inverse always results in the *x*. In other words, $f \circ f^{-1}(x) = f(f^{-1}(x)) = x$. As such, the composition of $f(x) = \log_3 x$ and $f^{-1}(x) = 3^x$ results in the equation $\log_3 3^x = x$. Use this composition relationship to find the *exact* solution to the equation $\log_3 x = 1.5$. What is the exact solution?

Move to page 1.4.

- 4. Solve the equation $\log_3 x = 1.5$ by changing the base and reducing the left side of the equation to *x*. To change the base, click the up and down arrows.
 - a. What base results in the exact solution?
 - b. What is the exact solution to $\log_3 x = 1.5$? Why?

Move to page 1.5.

- 5. You found an approximate numeric solution in questions 1 and 2, an exact graphical solution in question 3, and an exact numerical solution in question 4. Compare your solutions using the Calculator page provided. How do your solutions compare?
- 6. Estimate the solution to the equation $\log_2 x = 3.2$ using the following numeric pattern:
 - $\log_2 8 = 3$ $\log_2 x = 3.2$ $\log_2 16 = 4$

Move to page 2.1.

7. The table shows inputs and outputs for the function $f(x) = \log_2 x$. Input your estimate from question 6 into cell A2. Input other values to get the output as close as possible to 3.2. Record your closest input and output below:

$$f(8) = 3$$
$$f(___) = ___$$
$$f(16) = 4$$

Move to page 2.2.

8. The graph of $f(x) = \log_2 x$ is shown along with its inverse $f^{-1}(x) = 2^x$. Point *P*' is the reflection of point *P* over the line y = x. Move point *P*' so that the input of $f^{-1}(x) = 2^x$ is 3.2. According to the graph, what is the *approximate* solution to the equation $\log_2 x = 3.2$?

Move to page 2.3.

- 9. Solve the equation $\log_2 x = 3.2$ by changing the base and reducing the left side of the equation to *x*. To change the base, click the up and down arrows.
 - a. What base results in the exact solution?
 - b. What is the exact solution to $\log_2 x = 3.2$? Why?

Move to page 2.4.

10. Determine how close your estimates from questions 7 and 8 were by entering your exact answer from question 9 in this Calculator page. How do your solutions compare?

		Ŀ	_
-		1	3
	1		
		×	

Name	•
Class	<u>.</u>

- 11. Use the algebraic methods from questions 4 and 9 to find exact solutions to these
 - equations.
 - a. $\log_5 x = 1.3$
 - b. $\log_7 x = \sqrt{2}$

c.
$$\log_6 x = \frac{-10}{9}$$