
Cybersecurity 3: Hail, Caesar! 
TI-84 Plus CE Python 

©Texas Instruments 2024                                                                                                                education.ti.com/cybersecurity 

How it works 
• A substitution cipher uses the same alphanumeric and punctuation characters in both plaintext and 

ciphertext.  

• To encipher a message, each plaintext character’s alphabetical position is shifted (translated) to the 
right or left. The character at that new position becomes the ciphertext character.  

• To decipher a ciphertext, the translation process is reversed.  

• The same key must be used to encipher and decipher a message. 

• The table below shows the characters' positions in the alphabet with two punctuation marks. 

• Example: encipher the character “H” in the plaintext “HELLO” using a key = 3 and a right shift: 
a. Locate ‘H’; it is the 8th character in the table.  
b. Add the key of 3 to the position; 8 + 3 = 11 
c. Locate position 11; it is the character ‘K.’ 
d. The first letter of the ciphertext is ‘K.’ 
e. If you come to the end of the table, continue counting from the beginning. 
f. Repeat the previous steps for the remaining characters; the result is the ciphertext ’KHOOR’. 

• A substitution cipher can be cracked performing a character frequency analysis of the the ciphertext. 
In common plaintext writing the characters of the alphabet each have a frequency on average in large 
text. In the English language a space (ASCII 32) is most common character and ‘E’ is most the most 
common letter. Since ‘E’ is the 5th letter in the alphabet, by counting the frequency of each character in 
the ciphertext, the key can be deduced. For example if the most frequent character in the ciphtertext is 
‘K’, then there is a good chance, ‘K’ (position 11) is being substituted for ‘E’ (position 5) and the shift 
key is 6 because 11 – 5 = 6. This type of frequency analysis requires a large ciphertext to assume the 
most frequent ciphercharacter code for ‘E’. 

 

What will you do? 
1. Practice Caesar ciphering:  

a. using a right-shift and key = 6 along with the table above. Fill in the blank ciphertext space 
below. 

i. plaintext: HAIL CAESAR!    ciphertext:  _ _ _ _ _ _ _ _ _ _ _ _ 

b. using a right-shift and key = 6 along with the table above. Fill in the blank plaintext space below. 

i. plaintext: _ _ _ _ _ _ _ _ _ _ _ _ _ ciphertext: ICHKXEOYEL TF 

c. Plug in your micro:bit. Open the “crypt_3.py” program in the editor, inspect the code, and run 
the program. Check your encipherment of 1.a. Press the [var] key and select the 
encipher(“plaintext”, key,chr_set ) function. Enter the plaintext with quotes and the key as an 
integer to shift it and the chr_set. For this action, press the [var] key and select chr_set_1. For 
this activity type encipher(“HAIL CAESAR”, 6, chr_set_1). Read the comments in the Python 
code to help you understand what the code is doing. Do the coding steps match your steps to 
encipher the plaintext in practice 1a? 

d. Check your decipherment of 1.b. Press the [var] key and select the decipher(“ciphertext”, 
key,chr_set ) function. Enter the ciphertext with quotes, the key as an integer to shift it, and the 
chr_set as done in step1.c. For this action, press the [var] key and select chr_set_1. Read the 
comments in the Python code to help you understand what the code is doing. Do the coding 

character A B C D E F G H I J K L M N O P Q R S T U V W X Y Z space ! 

position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 



Cybersecurity 3: Hail, Caesar! 
TI-84 Plus CE Python 

©Texas Instruments 2024                                                                                                                education.ti.com/cybersecurity 

steps match your steps to encipher and decipher the plaintext and ciphertext in practice 1a and 
1b? 

e. What happens to the ciphertext if you change the key to a different number and re-run the 
program? 

2. Practice using the character frequency analysis: 
a. Open the ‘prac_1_3.py’ program in the editor and run the program to count the characters in 

the first paragraph from the novel “A Tale of Two Cities” by Charles Dickens. 
b. Exit Python and press the statplot menu, and make a linegraph of L1, the ascii code, vs. L2, the 

frequency. Select the zoom menu and 9. ZoomStat to graph the data. Select the trace menu and 
use the cursor keys to find the most frequent and second most frequent ASCII character codes 
in the ciphertext. Remember these two codes for the next step. 

c. Open and run the program ‘chr_ct_3.py’. Press the [var] key and select the get_chr(ascii_code) 
function. Enter the two codes from the previous step to find their corresponding ASCII 
characters. For example: >>> get_chr(72) returns the letter ‘H”. 

d. What is the most frequent letter in the text? 
3. Texting an encrypted message: 

• Ensure all group members use the same assigned group number. 

• The receiver  
a. Open the ‘recv_3.py,’ this program imports the crypt_3 program and uses the 

chr_set_2, which allows characters to be lowercase and adds additional punctuation 
marks. Once the ciphertext is received, the decipher function is use to convert back into 
plaintext. 

b. Change the group to the assigned number, then run the program before the sender runs 
theirs. 

• The sender 
a. Open the program named “send_3.py” in the editor and run the program to encipher 

and send the plaintext message to the receiver. This program imports the crypt_3 
program and uses the chr_set_2, which allows characters to be lowercase and adds 
additional punctuation marks. 

b. Edit the message string, change the group to the assigned number, and then run your 
program after the receiver and hacker have started theirs. 

• The hacker  
a. Open the program named ‘hack_3.py,’ in the editor change the group to the assigned 

number, and then run the program before the sender has run theirs. 
b. After the man-in-the-middle attack steals the ciphertext, repeat the process from the 

practice above.  
1) Press the [var] key and select count_chrs(), press the [var] key again and select 

‘stolen_msg’. It should look like this:  >>>count_chrs(stolen_msg) then press 
enter to count the characters in the stolen message. 

2) Exit Python and make a statplot of L1(ascii code) and L2 (frequency) and use 
trace to find most and second most frequent ASCII chraracter codes in the  
stolen ciphertext. 

3) Run the program chr_ct_3 and the function get_chr(ascii_code) to find the ascii 
character of from the codes in the scatterplot. Remember, the space character is 
the most frequent and ‘E’ second most frequent. Note: the cipher key is the 
number of letters the plaintext is shifted in the ciphertext. 



Cybersecurity 3: Hail, Caesar! 
TI-84 Plus CE Python 

©Texas Instruments 2024                                                                                                                education.ti.com/cybersecurity 

4) Test your analysis of the key by using decipher(stolen_msg, key,chr_set_2). Did 
you hack the message? 

• After your team runs the activity, the sender should only change the message and key and 
share the key with the receiver. Don’t tell the hacker the new key; keep it private! Can the 
hacker read your message in plaintext as in the ‘All Clear’ activity? 

 

Code it 
Sender role 

 

Receiver role 

 

Hacker role 

 
 

Go further 
• Try a different role in your team. 

• Try changing the key and repeating the activity. 
 

Check your understanding 
• Ciphers are used to obfuscate (hide) plaintext messages from hackers. 

• A key is required to translate the plaintext characters to the ciphertext characters. 

• The sender and receiver must use the same key. 

• Frequency analysis of characters is a technique to crack ciphers. 
 

Help 
• Check that everyone on the team is using their assigned group number. 

• Ensure the receiver and hacker run their programs and wait before the sender transmits the message. 

• Ensure the sender and receiver use the same key and it is private from the hacker. 
 

Files 
• Transfer the activity files below to your calculator using the TI Connect CE Software. The link to 

download is here. The best practice is to load all files for this cybersecurity activity and then delete 
them before loading the next set of activity files. This helps keep your calculator organized. 

Name Description 

pract_2.py Practice making a list of channels based on a private key. 

send_3.py  Sends text message to receiver using Caesar cipher. 

recv_3.py Receives text message from sender using Caesar cipher. 

hack_3.py Receives obfuscated text messages from the sender. 

freq_3.py Counts the frequency of characters in a string of text. This program is used 
by the hacker to crack cipher key of intercepted cihpertext. 

 

https://education.ti.com/en/software/details/en/CA9C74CAD02440A69FDC7189D7E1B6C2/swticonnectcesoftware

