

© Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

TEXAS INSTRUMENTS

Question: 7

Given
$$0 \le x \le 1$$
 then $\sin(\sin^{-1}(x) + \sin^{-1}(\sqrt{1-x^2}))$ is equal to:
a) $\frac{\pi}{2}$ b) π c) 0 d) -1 e)

Question: 8

The graph of
$$y = \tan^{-1}\left(\frac{x}{2}\right)$$
 has asymptotes at:
a) $y = -2$ and $y = 2$
b) $x = -2$ and $x = 2$
c) $y = -\frac{\pi}{2}$ and $y = \frac{\pi}{2}$
d) $x = -\frac{\pi}{2}$ and $x = \frac{\pi}{2}$
e) $y = -\pi$ and $y = \pi$

Question: 9

Given the function defined by the rule: $f(x) = a + b \sin^{-1}(cx)$ where *a*, *b* and *c* are real, non-zero constants, then the maximal domain of f(x) is:

-

_

a)
$$\left[-c,c\right]$$

b) $\left[-\frac{a}{b},\frac{a}{b}\right]$
c) $\left[\frac{c(a-1)}{b},\frac{c(1-a)}{b}\right]$
d) $\left[-\frac{1}{c},\frac{1}{c}\right]$
e) $\left[-\frac{\pi}{2c},\frac{\pi}{2c}\right]$

Question: 10

Given the function defined by the rule: $f(x) = a + b \tan^{-1}(c(x-d))$ where *a*, *b*, *c* and *d* are real positive constants, then the range of f(x) is:

a)
$$[a-b,a+b]$$

b) $(-\infty,\infty)$
c) $[a-b\pi,a+b\pi]$
d) $\left(a-\frac{b\pi}{c},a+\frac{b\pi}{c}\right)$
e) $\left(a-\frac{b\pi}{2},a+\frac{b\pi}{2}\right)$

© Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

1