

TI-Nspire CAS

Investigation

Student

Aim

The aim of this investigation is to learn how to find the prime factors of composite numbers.

Equipment

For this activity you will need:

- TI-Nspire CAS (or TI-Nspire)
- TI-Nspire file - Prime Factors

Introduction - Setting up the calculations

This activity requires access to the "Prime Factors" TI-Nspire file. This file should be loaded on your device before proceeding.

Once the file is on your handheld, press home and select My Documents. Locate the "Prime Factors" file and press enter to open.

4
Part of in this investigation requires calculations to be performed. The Scratchpad is a place where calculations can be computed and then discarded. To access the Scratchpad press home and select Scratchpad (or press A). Alternatively, press the 㑭 key (this key is not available on a Clickpad).

Factors

A factor is number that divides evenly into another number. For example, the factors of 10 are 2 and 5 because $10 \div 2=5$ and $10 \div 5=2$. After doing the division, there is no remainder so 2 and 5 are factors. The numbers 10 and 1 are also considered to be factors of 10 .

Prime Numbers

A prime number is a number whose only factors are itself and 1 . For example, 5 is a prime number because 1 and 5 are its only factors. Below is the list of the first 10 prime numbers:

$$
2,3,5,7,11,13,17,19,23,29, \ldots
$$

You will notice that except for the first number, they are all odd numbers. The other even numbers are not prime numbers because they all have 2 as a factor. For example:

$$
4=2 \times 2,6=2 \times 3,8=2 \times 4,10=2 \times 5, \text { etc. }
$$

You may also have noticed that some odd numbers are not in this list. This is because they have factors other than 2. For example:

$$
9=3 \times 3,15=3 \times 5,21=3 \times 7,25=5 \times 5,27=3 \times 9, \text { etc. }
$$

Composite Numbers

If a number has more than two factors (1 and itself) then it is known as a composite number. 6 is a composite number because it has the factors $1,2,3$ and 6 . The number 1 is a special case in that it is considered neither prime nor composite.

Prime Factors

A prime factor is a prime number which is a factor of another number. All composite numbers can be written as a product of prime factors. In fact, every composite number has a unique set of prime factors. The factors of 6 are $1,2,3$ and 6 but the prime factors of 6 are 2 and 3 . The number 6 is the only number to have the prime factors of 2×3.

Finding the Prime Factors of Composite Numbers

There are several methods you can use to find the prime factors of a composite number. One method is to use factor trees, where you keep splitting up a number until the end of each branch is a prime number. No matter how you initially split the number, you will eventually get a unique set of prime factors for every composite number.

There are two factor trees below showing how to split the number 12 . They both arrive at the unique set of prime factors for 12 , which are $2 \times 2 \times 3$.

Factor tree starting with $\mathbf{2 \times 6}$

Factor tree starting with 3×4

Using the Prime Factor Program

Open the Prime Factors file on your calculator.

Go to page 1.2.
Press enter to run the primefactors program. In the dialogue box, input any number up to 1200. Press OK.

The set of prime factors will be displayed followed by the prime factors in index form.

To run the program again, press enter.

Run the primefactors program to find the prime factors of the following numbers. In the second column, write the set of individual prime factors. In the third column, write the prime factors in index form. The first entry has been completed for you.

Number	Prime Factors (set of factors)	Prime Factors (index form)
75	$\{3,5,5\}$	$3 \cdot 5^{2}$
144		
169		
414		
855		
1001		

Note - to clear the screen on the Calculator page, press menu > Actions > Clear History. If you accidentally delete the word primefactors, press var and select it from the menu.

Using the Factor Command

The factor command on your calculator will find the prime factors of a number written in index form.

Open the Scratchpad.

Press menu > Algebra $>$ Factor.

Input a whole number up 1200.
(in this example, we used 60)
Press enter to display the prime factors.
Therefore $60=2^{2} \times 3 \times 5=2 \times 2 \times 3 \times 5$.

Px 1: Actions	1
$\frac{1}{2} \times 5$ 2: Number	1: Solve
$\mathrm{x}=3$: Algebra	2: Factor
$f(x)$ 4: Calculus	3: Expand
5: Probability	4: Zeros
$\overline{\mathrm{x}} 6$: Statistics	5: Complete the Square
[00] 7: Matrix \&	6: Numerical Solve
\$ $€$ 8: Finance	7: Solve System of Equations
	8: Polynomial Tools 9: Fraction Tools
	A: Convert Expression

Open Scratchpad and use the factor command to find the prime factors of the following numbers. In the second column, write the Scratchpad answer, which will be in index form. In the third column, write the prime factors without using index form. The first entry has been completed for you.

Number	Prime Factors (index form)	Prime Factors (individual factors)
60	$2^{2} \cdot 3 \cdot 5$	$2 \times 2 \times 3 \times 5$
175		
385		
440		
600		
864		

Extension Activity

The code for the primefactors program is shown on page 1.3. If you scroll through the program, you will see a series of While/EndWhile loops. When you input a number, the program goes through these loops to check for prime factors, starting with 2 and working through each prime factor up to 31 . The next prime number after 31 is 37 . Since $37 \times 37=1369$, this program will find the prime factors of all composite numbers up to but not including 1369.

Run the primefactors program for 1369 . What do you notice?

How could you extend the primefactors program so that it can find prime factors for numbers greater than 1368?

