

### **Question: 1**

A possible equation for the graph of the curve shown is:



### **Question: 2**

Which one of the following functions does **not** have range:  $[-\pi, \pi]$ 

a)  $y = \left| x - \frac{\pi}{2} \right| - \left| x + \frac{\pi}{2} \right|$ b)  $y = 2\sin^{-1}(x)$ c)  $y = 2\sin^{-1}(x-2)$ d)  $y = \tan^{-1}(x)$ e)  $y = 2\cos^{-1}(x) - \pi$ 

## **Question: 3**

y = f(x) has a local maximum at (2, -4), the function  $y = \frac{1}{f(x)}$  will have:

- a) a local maximum at (2,4)
- c) a local minimum at (2,4)

e) a local minimum 
$$\left(\frac{1}{2}, -\frac{1}{4}\right)$$

#### **Question: 4**

The graph y = cosec(2x) has asymptotes:

a) 
$$x = n\pi$$
 b)  $x = 2n\pi$  c)  $x = \frac{2(n-1)\pi}{4}$  d)  $x = \frac{n\pi}{4}$  e)  $x = \frac{n\pi}{2}$ 

© Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

- b) a local maximum at  $\left(2, -\frac{1}{4}\right)$
- d) a local minimum at  $\left(2,-\frac{1}{4}\right)$



### **Question: 5**

The graph of  $y = \frac{1}{2a^2 + ax - x^2}$  where *a* is a non-zero real constant, has asymptotes at:

a) 
$$x = 2a$$
 only  
b)  $x = -a$  only  
c)  $x = -a$  only

c) 
$$x = a$$
 and  $x = -2a$  only  
d)  $x = -a$  and  $x = 2a$  only  
e)  $x = -a$ ,  $x = 2a$  and  $y = 0$ .

## Question: 6

The graph of 
$$y = 2 \tan^{-1} \left( \frac{x}{2} \right)$$
 has asymptotes at  
a)  $x = \pm 2$  b)  $y = \pm 2$  c)  $x = \pm \frac{\pi}{2}$  d)  $y = \pm \frac{\pi}{2}$  e)  $y = \pm \pi$ 

### **Question: 7**

Given 
$$f(x) = (x-a)^2 (x+a)^2$$
,  $g(x) = \frac{1}{f(x)}$  and  $a > 1$  which statement is **not** true:  
a)  $f'(0) = 0$  b)  $f'(a) = 0$  c)  $g'(0) = 0$  d)  $g'(a) = 0$  e)  $0 < g(0) < 1$ 

### **Question: 8**

If 
$$f(x) = \frac{ax^2 + bx + c}{x + 5}$$
 has an asymptote  $y = 2x - 4$  then  
a)  $a = 2$   
 $b = 5$  b)  $a = 2$   
 $b = -5$  c)  $a = 2$   
 $b = 6$  d)  $a = -2$   
 $b = 4$  e)  $a = 2$   
 $b = -4$ 

### **Question: 9**

If 
$$f(x) = \frac{1}{x^2 + bx + c}$$
 has two asymptotes of the form  $x = m$  and  $x = n$  then it follows:  
a)  $b > 2\sqrt{c}$  or  
 $b < -2\sqrt{c}$  b)  $b > c$  c)  $b < c$  d)  $b < -2c$  e)  $b > 2c$ 

# **Question: 10**

Given  $a \neq b \neq c \neq d \neq 0$ , a possible equation for the graph shown is:

a) 
$$y = \frac{(x+a)(x-b)}{(x+c)(x-d)}$$
  
b)  $y = \frac{(x-a)(x-b)}{(x-c)(x-d)}$   
c)  $y = \frac{(x+a)^2(x+b)}{(x-c)(x-d)}$   
d)  $y = -x^3 + \frac{1}{(x-c)(x-d)} + 1$   
e)  $y = \frac{a(x+b)}{(x+c)(x-d)}$ 

© Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.