\qquad
Class \qquad

Problem 1 - Inscribed Angle Theorem

On page 1.3, you are given circle D with radius $A D$. Angle $A D B$ is a central angle and $\angle A C B$ is an inscribed angle.

1. Move point A to 2 different positions and point C to 2 different positions. Collect the data in the table. Calculate the ratios of $m \angle A C B$ to $m \angle A D B$ for each position. Record it in the table.

Position	Measure of $\angle A C B$	Measure of $\angle A D B$	$\frac{m \angle A C B}{m \angle A D B}$
$\mathbf{1}$			
2			
$\mathbf{3}$			
4			

2. Angles $A C B$ and $A D B$ are said to intercept the same $\operatorname{arc}(\overparen{A B})$ because they go through the same points A and B on the circle. An inscribed angle in a circle is \qquad the measure of the central angle that intercepts the same arc on the circle.

On page 1.6, you are given circle D. Angles $A C B$ and $A E B$ are inscribed angles and intercept the same arc.
3. Move point A to 2 different positions and move point E to 2 different positions. Collect the data in the table.

Position	Measure of $\angle A C B$	Measure of $\angle A E B$
1		
2		
3		
4		

4. Make a conjecture about two inscribed angles who intercept the same arc in a circle.

On page 1.9, you are given circle D. Use 1.9 to answer the following questions.
5. In circle D, what kind of segment is $A B$?
6. In circle D, what is $m \angle A C B$? (Hint: Use your answer to Exercise 4 to help you.).

Problem 2 - Extension of the Inscribed Angle Theorem

On page 2.2, you are given circle $D, \overparen{A B}$, and $\angle A C B$. Point G is a point on $\overparen{A B}, \angle A C B$ is an inscribed angle, and $A G$ and $B G$ are rays.
7. Move point A to 2 different positions and move point G to 2 different positions. Collect the data in the table.

Position	Measure of $\angle A C B$	Measure of $\angle A D B$	Measure of $\angle A G E$
1			
2			
3			
4			

8. Make a conjecture: The angle formed by the intersection of $\overrightarrow{A G}$ and $\overrightarrow{B G}$ is \qquad the measure of the central angle ADB.
On page 2.5, you are given circle $D, \overparen{A B}$, and $\angle A C B$. Point G is a point on $\overparen{A B}$ and $\angle A C B$ is an inscribed angle. Also, you are given chord $A B$ and a tangent line $B E$.
9. Move point A to 2 different positions and move point B to 2 different positions. Collect the data in the table.

Position	Measure of $\angle A C B$	Measure of $\angle A D B$	Measure of $\angle A B E$
1			
2			
3			
4			

10. Make a conjecture: The angle between a chord and the tangent line at one of its intersection points equals \qquad of the central angle intercepted by the chord.
