

Name .	
Class	

Problem 1 – Inscribed Angle Theorem

On page 1.3, you are given circle *D* with radius *AD*. Angle *ADB* is a central angle and $\angle ACB$ is an inscribed angle.

1. Move point *A* to 2 different positions and point *C* to 2 different positions. Collect the data in the table. Calculate the ratios of $m \angle ACB$ to $m \angle ADB$ for each position. Record it in the table.

Position	Measure of ∠ACB	Measure of ∠ADB	$\frac{m\angle ACB}{m\angle ADB}$
1			
2			
3			
4			

2. Angles ACB and ADB are said to intercept the same arc (AB) because they go through the same points A and B on the circle. An inscribed angle in a circle is ______ the measure of the central angle that intercepts the same arc on the circle.

On page 1.6, you are given circle *D*. Angles *ACB* and *AEB* are inscribed angles and intercept the same arc.

3. Move point *A* to 2 different positions and move point *E* to 2 different positions. Collect the data in the table.

Position	Measure of ∠ACB	Measure of ∠AEB
1		
2		
3		
4		

4. Make a conjecture about two inscribed angles who intercept the same arc in a circle.

On page 1.9, you are given circle *D*. Use 1.9 to answer the following questions.

- 5. In circle *D*, what kind of segment is *AB*?
- **6.** In circle *D*, what is $m \angle ACB$? (Hint: Use your answer to Exercise 4 to help you.).

Problem 2 – Extension of the Inscribed Angle Theorem

On page 2.2, you are given circle D, AB, and $\angle ACB$. Point G is a point on AB, $\angle ACB$ is an inscribed angle, and AG and BG are rays.

7. Move point *A* to 2 different positions and move point *G* to 2 different positions. Collect the data in the table.

Position	Measure of ∠ACB	Measure of ∠ADB	Measure of ∠AGE
1			
2			
3			
4			

8. Make a conjecture: The angle formed by the intersection of \overrightarrow{AG} and \overrightarrow{BG} is ______ the measure of the central angle *ADB*.

On page 2.5, you are given circle D, \overline{AB} , and $\angle ACB$. Point G is a point on \overline{AB} and $\angle ACB$ is an inscribed angle. Also, you are given chord AB and a tangent line BE.

9. Move point *A* to 2 different positions and move point *B* to 2 different positions. Collect the data in the table.

Position	Measure of ∠ACB	Measure of ∠ADB	Measure of ∠ABE
1			
2			
3			
4			

10. Make a conjecture: The angle between a chord and the tangent line at one of its intersection points equals ______ of the central angle intercepted by the chord.