Topics in Calculus: Applications of Derivatives

Optimization

NCTM Principles and Standards

- **Content Standard:** Represent and analyze mathematical situations and structures using algebraic symbols
- **Process Standard**: Use representations to model and interpret physical, social, and mathematical phenomena

In business and industry the object is to find the optimal solution for a problem. This may mean finding the conditions that produce such situations as minimum cost, maximum profit, maximum volume, or minimum surface area.

Strategies for Solving Problems:

- 1. Draw a picture.
- 2. Write a mathematical model.
- 3. Draw a graph of the function.
- 4. Draw a graph of the problem situation (that is select the domain values that make sense for that problem).
- 5. Find critical points.
- 6. Find the extreme (optimal) value.
- A box with no top is to be created from a rectangle with dimensions 25cm by 30cm by cutting congruent squares of side length x from the corners. Determine the size square that will produce the box with maximum volume.

1. Picture

- 1. Mathematical model: V(x)=x(30-2x)(25-2x)
- 2. Graph the function:

3. Draw a graph of the problem situation.

4. Find critical values.

To find the maximum value press [F5]4. Press ①/② as necessary to move to a point to the left of the maximum and press [ENTER]. Press ③ to move to the right of the maximum and press [ENTER].

5. Find the extreme value.

- Use the CAS features of the TI-89 to find the maximum value.
 - 1. Find the derivative for f(x). Press F3 1 to select the differentiate command or press 2nd 8 (x*(25-2x)*(30-2x), X).

- 2. Set the derivative equal to zero and solve for x. Press F2 1 to paste the solve command in the entry line. Press o to arrow up to the derivative on the screen and press ENTER to paste it into the entry line. Type □ 0 , X) and press ENTER.
- 3. To see the approximate solutions press

 ◆ENTER. Notice that there are two solutions one of which is not reasonable for this problem.
- | F1+ | F2+ | F3+ | F4+ | F5 | F6+ | F6+ | F6+ | F6+ | F6+ | F70015 | F19+ | F75 | F7

3. To find the minimum, press Y 1 (← ENTER to paste the answer into the entry line. Press () to arrow to the left and delete x= and the unwanted answer. Press () to arrow back to the end of the statement and press () ENTER. Or simply type Y 1 (4.529).

[F1-] F2- [F3-] F4-] F5]	F6-)
F1- F2- F3- F4- F5 Tools Algebra Calc Other Pr9miOC	lean Up
■ solve(12·x ² – 220·x·	+ 750 ⊧▶
$\times = 13.8065$ or $\times = 6$	4.52686
• y1(4.5268630309751)	
	1512.04
• y1(4.5268630309751)	
	1512.04
g1(4.5268630309751)	
MAIN RAD AUTO FUNC	5/30