Topics in Calculus: Applications of Derivatives

Optimization

NCTM Principles and Standards

- Content Standard: Represent and analyze mathematical situations and structures using algebraic symbols
- Process Standard: Use representations to model and interpret physical, social, and mathematical phenomena

In business and industry the object is to find the optimal solution for a problem. This may mean finding the conditions that produce such situations as minimum cost, maximum profit, maximum volume, or minimum surface area.

Strategies for Solving Problems:

1. Draw a picture.
2. Write a mathematical model.
3. Draw a graph of the function.
4. Draw a graph of the problem situation (that is select the domain values that make sense for that problem).
5. Find critical points.
6. Find the extreme (optimal) value.

- A box with no top is to be created from a rectangle with dimensions 25 cm by 30 cm by cutting congruent squares of side length x from the corners. Determine the size square that will produce the box with maximum volume.

1. Picture

2. Mathematical model: $\mathrm{V}(\mathrm{x})=\mathrm{x}(30-2 \mathrm{x})(25-2 \mathrm{x})$
3. Graph the function:

4. Draw a graph of the problem situation.

5. Find critical values.

To find the maximum value press 654 . Press $(1 /()$ as necessary to move to a point to the left of the maximum and press ENTER. Press (1) to move to the right of the maximum and press ENTER.

5. Find the extreme value.

- Use the CAS features of the TI-89 to find the maximum value.

1. Find the derivative for $f(x)$. Press F3 1 to select the differentiate command or press 2nd 8 ($\mathrm{x} *(25-2 \mathrm{x}) *(30-2 \mathrm{x}) \square$ 区D.

2. Set the derivative equal to zero and solve for x . Press F2 1 to paste the solve command in the entry line. Press Θ to arrow up to the derivative on the screen and press ENTER to paste it into the entry line. Type $\because 0 \square \square$ \square and press ENTER.
3. To see the approximate solutions press \rightarrow ENTER. Notice that there are two solutions one of which is not reasonable for this problem.
4. To find the minimum, press $Y \square \square \odot$ ENTER to paste the answer into the entry line. Press (1) to arrow to the left and delete $x=$ and the unwanted answer. Press (1) to arrow back to the end of the statement and press 1 ENTER. Or simply type Y OU 4.5290.

