

Name	
Class	

Investigating Relationship Between Dimensions

Here are some facts about the unit circle.

- The cosine of an angle is equal to the *x*-coordinate of a point on the unit circle.
- The sine of an angle is equal to the *y*-coordinate of a point on the unit circle.
- The tangent of an angle is equal to $\frac{y}{x}$ or $\frac{\sin\theta}{\cos\theta}$.

In this lesson, you will generate the graphs of the trigonometric functions y = sin(x), y = cos(x), and y = tan(x), and see how they get their shapes.

1. The unit circle on page 1.5 shows the *x*-value (*xdist*) for each point on the circle. Move the open point around the circle and record the *xdist* for all the special angles in the first two quadrants. Write the values in this table and then fill in the values in Column B on page 1.6.

angles (in degrees)	<i>x</i> dist	<i>y</i> dist	tangent
0.			
30.			
45.			
60.			
90.			
120.			
135.			
150.			
180.			
210.			
225.			
240.			
270.			
300.			
315.			
330.			
360.			

Graphs of Sine, Cosine, and Tangent

- 2. Repeat the process with the *y*-values (*ydist*) on page 1.8. Fill in the values in the table and then enter them on page 1.6.
 - **a.** Why are some of the table values negative?
 - **b.** What patterns do you notice?
- **3.** On page 1.10, use the points on the circle to move the two triangles around until both angles are the same ($\theta = \theta 2$). Make sure θ remains in Quadrant I, and $\theta 2$ remains in Quadrant III.
 - **a.** What do you notice about the two triangles?
 - **b.** How can you use the information from the first two quadrants to complete all the values on the table?
- 4. Complete Columns B and C of the table for 180° to 360°.

Graphing

- 5. Now you will graph the cosine function on page 1.12.
 - **a.** Choose a scatter plot for the cosine data (*angles*, *xdist*). What window settings are needed to view all the points?
 - **b.** Graph y = cos(x) in f1(x). (Be sure the handheld is in **degree** mode.) What do you notice about the shape of the graph?

- 6. Now you will graph the sine function on page 1.14
 - **a.** Create a scatter plot in **s2** on page 1.14 What variables do you need to use for the *x*-values and *y*-values?
 - **b.** Graph y = sin(x) in **f2**(*x*). How does the shape of the graph differ from the cosine function?
- Sketch the two functions, y = cos(x) and y = sin(x), on the same graph. Use the blank graph here, and make your graph as accurate as possible.

1.14	1.15	1.16 🕨	Graphs	SinCos	$\overline{}$	
1 .1	v	_				
1						
1						
0.2						~
-1020						 360
1						
Ţ						
+						
-1.1						

- **8.** To create the graph for the tangent function, first you will need to fill in the tangent values in the table on page 1.6.
 - **a.** What formula do you need to use to find the tangent values? Enter this formula in the gray box at the top of Column D on page 1.6.
 - b. Use the information to graph a scatter plot of the tangent values in s3 on page 1.16.
 Then, graph the function in f3. How does the tangent graph relate to sine and cosine graphs?