Midsegments of Triangles

Time required
ID: 9408
40 minutes

Activity Overview

In this activity, students will explore the properties of the midsegment, a segment that connects the midpoints of two sides of a triangle. First, students will construct and investigate one midsegment and the relationship of the new small triangle to the original triangle. Then, all three midsegments will be constructed and this figure will be explored.

Topic: Ratio, Proportion \& Similarity

- Construct a line segment joining the midpoints of two sides of a triangle and conjecture a relationship between the segment and the third side.
- Prove and apply the Triangle Midsegment Theorem and its converse.

Teacher Preparation and Notes

- The midsegment of a triangle is a line segment connecting the midpoints of any two sides of the triangle. It is parallel to and half as long as the third side of the triangle.
- Notes for using the TI-Nspire ${ }^{\text {TM }}$ Navigator ${ }^{\text {TM }}$ System are included throughout the activity. The use of the Navigator System is not necessary for completion of this activity.
- To download the student TI-Nspire document (.tns file) and student worksheet, go to education.ti.com/exchange and enter "9408" in the quick search box.

Associated Materials

- MidsegmentsOfTriangles_Student.doc
- MidsegmentsOfTriangles.tns

Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the quick search box.

- Triangle Midsegment Theorem Theorem (TI-84 Plus family) - 7275
- Triangle Midsegment Exploration (TI-Nspire technology) - 11390
- Midsegments (TI-Nspire technology) - 9422

Problem 1 - One Midsegment

On page 1.3, students will use the Midpoint tool from the Construction menu to construct the midpoints of two sides of the triangle, labeling the points D and E, as shown.

Then they will use the Segment tool from the Points \& Lines menu to connect points D and E.

TI-Nspire Navigator Opportunity: Screen Capture
See Note 1 at the end of this lesson.

Next, students should select the Text tool (Actions menu) and display the ratio $\frac{B C}{D E}$ on the screen. Then they can use the Calculate tool (Actions menu) to evaluate the ratio of the lengths of $\overline{B C}$ and $\overline{D E}$. Dragging a vertex of $\triangle A B C$, students can record their observations on their worksheets.

Note: To use the Calculate tool, press (or enter) once on the expression to evaluate, and then once on the value for each variable as you are prompted.

Ask: What is the relationship between $\triangle A D E$ and $\triangle A B C$? Can you prove it?

Problem 2 - Three Midsegments

On page 2.2, $\triangle A B C$ is shown and the midpoints of two of its sides have been constructed.
Students should first create the third midpoint and label it point F.

Then they can construct $\triangle D E F$ using the Triangle tool from the Shapes menu.

Students can now use the Length and Area tools from the Measurement menu to measure the perimeter and area of $\triangle D E F$ and $\triangle A B C$.

Have them record these measurements on their worksheets.

TI-Nspire Navigator Opportunity: Quick Poll

See Note 2 at the end of this lesson.

Next, student should use the Text and Calculate tools to find the ratio of the perimeters and areas using the formula $\frac{A B C}{D E F}$. They can then drag a vertex of $\triangle A B C$ and record their observations.

Ask: What is the relationship between
$\triangle D E F$ and $\triangle A B C$? Can you prove it?
What is the relationship between
$\triangle D E F$ and $\triangle A D E$? Can you prove it?

Apply the Math - Solutions

1. $B C=12.4$ inches, $E F=5.7$ inches
2. Perimeter of $\triangle D E F=18 \mathrm{~cm}$
3. Area of $\triangle A B C=$ Area of $\triangle A D E=$ Area of $\triangle B D F=2.15 \mathrm{CM}^{2}$
4. $m \angle A=m \angle C E F=m \angle B D F=m \angle E F D=64^{\circ}$
$m \angle B=m \angle E F C=m \angle A D E=m \angle D E F=89^{\circ}$
$m \angle C=m \angle A E D=m \angle E D F=m \angle D F B=27^{\circ}$

TI-Nspire Navigator Opportunities

Note 1

Problem 1, Screen Capture

This would be a good place to do a screen capture to verify students are able to construct the midpoints and segments, and use the Length, Slope, and Angle tools. In Problem 2, screen capture can be used to verify students are correctly calculating the area and perimeter.

Note 2
Whole Document, Quick Poll
Throughout the activity, you may choose to use Quick Poll to assess student understanding. The worksheet questions can be used as a guide for possible questions to ask.

